Glycemic control of patients with type 1 diabetes mellitus through the use of blood glucose meters and network parameters

Authors

  • Juan Encinas Muñoz Internal Student at the Faculty of Medicine. University of Valladolid, Spain. https://orcid.org/0009-0006-2432-7018
  • Jesús Poza Crespo Biomedical Engineering Group, University of Valladolid, Valladolid, Spain. Valladolid Institute for Biomedical Research (IBioVALL), Valladolid, Spain. Biomedical Research Network Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Spain. IMUVA, Institute for Research in Mathematics, University of Valladolid, Valladolid, Spain.
  • Carlos Gómez Peña Biomedical Engineering Group, University of Valladolid, Valladolid, Spain. Valladolid Institute for Biomedical Research (IBioVALL), Valladolid, Spain. Biomedical Research Network Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Spain.
  • Gonzalo Díaz Soto Physician. Endocrinology Department. Valladolid University Hospital, Spain

DOI:

https://doi.org/10.24197/cl.30.2025.4-15

Keywords:

glycemic control, C-peptide, partnership networks, glycemic variability

Abstract

Diabetes mellitus type 1 is a chronical disease that is characterized by an autoimmune destruction of pancreatic b cells. To avoid complications, diabetic patients need to have a good glycemic control. On this context, glycemic variability and pancreatic reserve are essential concepts. The former can be described with several parameters, but there is no gold standard. Thus, the variation coefficient is the one that is used in the clinic. The latter is characterized by C peptide, which is used as a biomarker. To correlate both concepts and envision the global control of a diabetic patient, a correlation analysis has been done using association networks. With this study, the main clusters of glycemic variability parameters have been established, as well as the strongest correlations between them and variables related to C peptide. Despite of the presence of several groups of parameters referred to the different aspects of glycemic variability, all variables share much information. Regarding the correlations with the C peptide, there are association values that are significant, but none of them has a high strength. In any case, association networks are presented as an essential tool to determine the glycemic control of a patient.

Downloads

Download data is not yet available.

References

Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. Type 1 diabetes mellitus. Nature Reviews Disease Primers. 2017 Mar 30;3(1):17016.

Paschou SA, Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. On type 1 diabetes mellitus pathogenesis. Endocrine Connections. 2018 Jan;7(1):R38–46.

Roche EF, Menon A, Gill D, Hoey H. Clinical presentation of type 1 diabetes. Pediatric Diabetes. 2005 Jun;6(2):75–8.

Gregory JM, Moore DJ, Simmons JH. Type 1 Diabetes Mellitus. Pediatrics in Review. 2013 May 1;34(5):203–15.

Rahman MS, Hossain KS, Das S, Kundu S, Adegoke EO, Rahman MdA, Hannan MdA, Uddin, MdJ, Pang M-G. Role of Insulin in Health and Disease: An Update. International Journal of Molecular Sciences. 2021 Jun 15;22(12):6403.

Marks BE, Williams KM, Sherwood JS, Putman MS. Practical aspects of diabetes technology use: Continuous glucose monitors, insulin pumps, and automated insulin delivery systems. Journal of Clinical and Translational Endocrinology. 2022 Mar;27:100282.

Blum A. Freestyle Libre Glucose Monitoring System. Clinical Diabetes. 2018 Apr 1;36(2):203–4.

Breyton AE, Lambert-Porcheron S, Laville M, Vinoy S, Nazare JA. CGMS and Glycemic Variability, Relevance in Clinical Research to Evaluate Interventions in T2D, a Literature Review. Frontiers in Endocrinology (Lausanne). 2021 Sep 9;12.

Flatt AJS, Greenbaum CJ, Shaw JAM, Rickels MR. Pancreatic islet reserve in type 1 diabetes. Annals of the New York Academy of Sciences. 2021 Jul 6;1495(1):40–54.

Leighton E, Sainsbury CA, Jones GC. A Practical Review of C-Peptide Testing in Diabetes. Diabetes Therapy. 2017 Jun 8;8(3):475–87.

Rickels MR, Evans-Molina C, Bahnson HT, Ylescupidez A, Nadeau KJ, Hao W, Clements MA, Sherr JL, Pratley RE, Hannon TS, Shah VN, Miller KM, Greenbaum CJ, T1D Exchange -Cell Function Study Group. High residual C-peptide likely contributes to glycemic control in type 1 diabetes. Journal of Clinical Investigation. 2020 Mar 3;130(4):1850–62.

Xing D, Kollman C, Beck RW, Tamborlane WV, Laffel L, Buckingham BA, Wilson DM, Weinzimer S, Fiallo-Scharer R, Ruedy KJ, Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Optimal Sampling Intervals to Assess Long-Term Glycemic Control Using Continuous Glucose Monitoring. Diabetes Technology & Therapeutics. 2011 Mar;13(3):351–8.

Battelino T, Danne T, Bergenstal RM, Amiel SA, Beck R, Biester T, Bosi E, Buckingham BA, Cefalu WT, Close KL, Cobelli C, Dassau E, DeVries JH, Donaghue KC, Dovc K, Doyle 3rd FJ, Garg S, Grunberger G, Heller S, Heinemann L, Hirsch IB, Hovorka R, Jia W, Kordonouri O, Kovatchev B, Kowalski A, Laffel L, Levine B, Mayorov A, Mathieu C, Murphy HR, Nimri R, Nørgaard K, Parkin CG, Renard E, Rodbard D, Saboo B, Schatz D, Stoner K, Urakami T, Weinzimer SA, Phillip M. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations from the International Consensus on Time in Range. Diabetes Care. 2019 Aug 1;42(8):1593–603.

Bahillo-Curieses P, Fernández Velasco P, Pérez-López P, Vidueira Martínez AM, Nieto de la Marca M de la O, Díaz-Soto G. Utility of time in tight range (TITR) in evaluating metabolic control in pediatric and adult patients with type 1 diabetes in treatment with advanced hybrid closed-loop systems. Endocrine. 2024 May 30;86(2):539–545.

Díaz-Soto G, Pérez-López P, Férnandez-Velasco P, Nieto de la Marca M de la O, Delgado E, del Amo S, de Luis D, Bahillo-Curieses P. Glycemia Risk Index Assessment in a Pediatric and Adult Patient Cohort with Type 1 Diabetes Mellitus. Journal of Diabetes Science and Technology. 2024 Sep 16;18(5):1063–9.

Lazar S, Ionita I, Reurean-Pintilei D, Timar B. How to Measure Glycemic Variability? A Literature Review. Medicina (Buenos Aires). 2023 Dec 28;60(1):61.

Rodbard D. Glucose Variability: A Review of Clinical Applications and Research Developments. Diabetes Technology & Therapeutics. 2018 Jun;20(S2):S25–S215.

Armonaite K, Conti L, Olejarczyk E, Tecchio F. Insights on neural signal analysis with Higuchi fractal dimension. Communications in Applied and Industrial Mathematics. 2024 Oct 1;15(2):17–27.

Salankar N, Qaisar SM, Pławiak P, Tadeusiewicz R, Hammad M. EEG based alcoholism detection by oscillatory modes decomposition second order difference plots and machine learning. Biocybernetics and Biomedical Engineering. 2022 Jan;42(1):173–86.

Borowska M. Multiscale Permutation Lempel–Ziv Complexity Measure for Biomedical Signal Analysis: Interpretation and Application to Focal EEG Signals. Entropy. 2021 Jun 29;23(7):832.

Ramos-Fernández G, Boyer D, Aureli F, Vick LG. Association networks in spider monkeys (Ateles geoffroyi). Behavioral Ecology and Sociobiology. 2009 May 2;63(7):999–1013.

Borsboom D. A network theory of mental disorders. World Psychiatry. 2017 Feb 26;16(1):5–13.

Gutiérrez-Tobal GC, Gomez-Pilar J, Kheirandish-Gozal L, Martín-Montero A, Poza J, Álvarez D, del Campo F, Gozal D, Hornero R. Pediatric Sleep Apnea: The Overnight Electroencephalogram as a Phenotypic Biomarker. Frontiers in Neuroscience. 2021 Nov 3;15:644697.

Jimeno N, Gomez-Pilar J, Poza J, Hornero R, Vogeley K, Meisenzahl E, Haidl T, Rosen M, Klosterkötter J, Schultze-Lutter F. Main Symptomatic Treatment Targets in Suspected and Early Psychosis: New Insights from Network Analysis. Schizophrenia Bulletin. 2020 Jul 8;46(4):884–95.

Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D. qgraph: Network Visualizations of Relationships in Psychometric Data. Journal of Statistical Software. 2012;48(4).

Rejas Llamera A. Desarrollo de una herramienta basada en redes de asociación para caracterizar la actividad neuronal en la migraña. 2023 [cited 2025 Jul 7]; Available from: https://uvadoc.uva.es/handle/10324/61349

Tokutsu A, Okada Y, Mita T, Torimoto K, Wakasugi S, Katakami N, Yoshii H, Uryu K, Nishida K, Arao T, Tanaka Y, Gosho M, Schimomura I, Watada H. Relationship between blood glucose variability in ambulatory glucose profile and standardized continuous glucose monitoring metrics: Subanalysis of a prospective cohort study. Diabetes, Obesity & Metabolism. 2022 Jan 28;24(1):82–93.

El-Laboudi AH, Godsland IF, Johnston DG, Oliver NS. Measures of Glycemic Variability in Type 1 Diabetes and the Effect of Real-Time Continuous Glucose Monitoring. Diabetes Technology & Therapeutics. 2016 Dec;18(12):806–12.

Pérez-López P, Férnandez-Velasco P, Bahillo-Curieses P, de Luis D, Díaz-Soto G. Impact of glucose variability on the assessment of the glycemia risk index (GRI) and classic glycemic metrics. Endocrine. 2023 Sep 11;82(3):560–8.

Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage. 2010 Sep;52(3):1059–69.

Downloads

Published

2025-10-23

Issue

Section

Research and clinical practice