Learning trajectories: a tool for learning and teaching mathematics in early childhood education

Authors

DOI:

https://doi.org/10.24197/edmain.1.2025.105-125

Keywords:

Trayectorias de aprendizaje, Educación Infantil, Medida de longitud, Simetría

Abstract

Promoting quality mathematical activity from an early age is one of the objectives of the research community in early childhood and primary mathematics education. This article presents the learning trajectories approach as a tool that can help to improve the teaching and learning processes of mathematics at this stage. Two proposals for learning trajectories are described. One for length measurement and the other for symmetry. These proposals have been implemented with children aged 5-7 years. It is shown that school experiences centred on children and their ways of reasoning are effective in developing their geometric thinking.

Downloads

Download data is not yet available.

References

Albarracín, L., Badillo, E., Giménez, J., Vanegas, Y. y Vilella, X. (2018). Aprender a enseñar matemáticas en la educación primaria. Síntesis.

Alsina, Á. (2022a). Itinerarios didácticos para la enseñanza de las matemáticas de 3 a 6 años. Graó.

Alsina, Á. (2022b). Los contenidos matemáticos en el currículo de Educación Infantil: contrastando la legislación educativa española con la investigación en educación matemática infantil. Épsilon-Revista de Educación Matemática, 111, 67-89.

Alsina, Á., Berciano, A., de Castro, C., Edo, M., Giménez, J., Jiménez, C., Prat, M., Salgado, M. y Vanegas, Y. (2022). Matemáticas en la Educación Infantil. En L. Blanco, N. Climent, M. T. González, A. Moreno, G. Sánchez Matamoros, C. de Castro, y C. Jiménez (Coords.), Aportaciones al desarrollo del currículo desde la investigación en educación matemática (pp. 107–147). Editorial Universidad de Granada.

Antonopoulos, K. Zacharos, K. y Ravanis, K. (2009). Measurement activities and teaching interaction in early childhood education. En M. Paramythiotou y C. Angelaki (Eds.), European regional conference "Current Issues in Preschool Education in Europe: Shaping the Future" (pp. 55-63). OMEP.

Battista, M. T. (2006). Understanding the development of students’ thinking about length. Teaching Children Mathematics, 13(3), 140-146. https://doi.org/10.5951/TCM.13.3.0140

Bishop, A. (1999). Enculturación matemática. La educación matemática desde una perspectiva cultural. Paidós.

Bornstein, M. H., Ferdinandsen, K. y Gross, C. G. (1981). Perception of symmetry in infancy. Developmental Psychology, 17(1), 82-86. https://doi.org/10.1037/0012-1649.17.1.82

Buys, K. y de Moor, E. (2005). Domain description Measurement. En M. van den Heuvel-Panhuizen y K. Buys (Eds.), Young Children Learn Measurement and Geometry. A Learning-Teaching Trajectory with Intermediate Attainment Targets for the Lower Grades in Primary School (pp. 15-36). Sense Publishers.

Canals, M. A. (1997). Geometría en las primeras edades escolares. Suma- Revista para la enseñanza y el aprendizaje de las matemáticas, 25, 31-44.

Carpenter, T., Loef, M., Johnson, N., Turrou, A. y Wager, A. (2014). Young Children’s Mathematics. Heinemann.

Carruthers, E. y Worthington, M. (2010). Children’s mathematical development. En T. Bruce (Ed.), Early childhood: A guide for students. Sage Publications.

Chamorro, M. C. (2005). Didáctica de las matemáticas para educación infantil. Pearson Educación.

Clements, D. y Sarama, J. (2007). Early childhood mathematics learning. En F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning, volume 1 (pp. 461-555). Information Age Publishing.

Clements, D. y Sarama, J. (2015). El Aprendizaje y la enseñanza de las matemáticas a temprana edad: el enfoque de las trayectorias de aprendizaje. Learning Tools.

Clements, D. y Sarama, J. (2024). Systematic review of learning trajectories in early mathematics. ZDM Mathematics Education, 57, 637-650. https://doi.org/10.1007/s11858-024-01644-1

Copley, J. V. (2000). The Young Child and Mathematics. NAEYC.

Davis, B. y Spatial Reasoning Study Group. (2015). Spatial reasoning in the early years. Principles, Assertions, and Speculations. Routledge.

Doorman, M., Van den Heuvel-Panhuizen, M. y Goddijn, A. (2020). The Emergence of Meaningful Geometry. En M. Van den Heuvel-Panhuizen (Ed.), National Reflections on the Netherlands Didactics of Mathematics (pp. 281-302). ICME-13 Monographs. Springer. https://doi.org/10.1007/978-3-030-33824-4_1

Eberle, S. G. (2014). The Elements of Play: Toward a Philosophy and a Definition of Play. American Journal of Play, 6(2), 214–233.

Frye, D., Baroody, A., Burchinal, M., Carver, S., Jordan, N. y McDowell, J. (2013). Teaching Math to Young Children: A practice guide. National Center for Education Evaluation and Regional Assistance (NCEE). IES.

Ginsburg, H. P. (2016). Helping early childhood educators to understand and assess young children’s mathematical minds. ZDM Mathematics Education, 48, 941–946. https://doi.org/10.1007/s11858-016-0807-7

Jones, K. (2002). Issues in the teaching and learning of geometry. En L. Haggarty (Ed.), Aspects of Teaching Secondary Mathematics: Perspectives on Practice (pp. 121–139). Routledge.

Knuchel, C. (2004). Teaching Symmetry in the Elementary Curriculum. The Mathematics Enthusiast, 1(1), 3–8. https://doi.org/10.54870/1551-3440.1001

Leikin, R., Berman, A. y Zaslavsky, O. (2000). Applications of symmetry to problem solving. International Journal of Mathematical Education in Science and Technology, 31(6), 799-809. https://doi.org/10.1080/00207390050203315

Moss, J., Bruce, C., Caswell, B., Caswell, B., Flynn, T. y Hawes, Z. (2016). Taking shape: Activities to develop geometric and spatial thinking. Grades K-2. Pearson.

National Association for the Education of Young Children (NAEYC) y National Council of Teachers of Mathematics (NCTM) (2013). Matemáticas en la educación infantil: Facilitando un buen inicio. Declaración conjunta de posición. Edma 0-6: Educación Matemática en la Infancia, 2(1), 1-23. https://doi.org/10.24197/edmain.1.2013.1-23

Ramírez, M. y De Castro, C. (2014). Trayectorias de aprendizaje de la multiplicación y la división de cuatro a siete años. Épsilon. Revista de Educación Matemática, 31(3), 41-56.

Real Decreto 95/2022, de 1 de febrero, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Infantil (BOE-A-2022-1654). (2022). Boletín Oficial del Estado. https://www.boe.es/eli/es/rd/2022/02/01/95

Rosell, C., Vanegas, Y. y Giménez, J. (2022). Una aproximación a la construcción de la noción de simetría en educación infantil. Acta Latinoamericana de Matemática Educativa, 34 (2) 247-255.

Rubio, A., Vanegas, Y. y Prat, M. (2018). Herramienta para evaluar trayectorias de aprendizaje de la medida de longitud en niños de 6-8 años. Edma 0-6: Educación Matemática en la Infancia, 7(2), 76-86. https://doi.org/10.24197/edmain.2.2018.76-86

Samuel, M., Vanegas, Y. y Giménez, J. (2018). Caracterización del conocimiento matemático de futuras maestras de educación infantil. Bordón. Revista de Pedagogía, 70(3), 61–75. https://doi.org/10.13042/Bordon.2018.62907

Seo, K. H. y Ginsburg, H. P. (2004). What is developmentally appropriate in early childhood mathematics education? Lessons from New Research. En D. H. Clements, J. Sarama y A. M. Dibiase (Eds.), Engaging young children in mathematics: Standards for early childhood mathematics education (pp. 91–104). Hillsdale.

Smith, J. P., van den Heuvel-Panhuizen, M. y Teppo, A. (2011). Learning, teaching, and using measurement: introduction to the issue. ZDM Mathematics Education, 43, 617-620. https://doi.org/10.1007/s11858-011-0369-7

Stewart, I. (2007). Why Beauty is Truth: A History of Symmetry. Hachette.

Tan-Sisman, G. y Aksu, M. (2012a). Seventh grade students' understanding of linear measurement: what has been learned about linear measurement in seven years of schooling process? Procedia-Social and Behavioral Sciences, 46, 1905-1909. https://doi.org/10.1016/j.sbspro.2012.05.400

Tan-Sisman, G. y Aksu, M. (2012b). The length measurement in the Turkish mathematics curriculum: its potential to contribute to students’ learning. International Journal of Science and Mathematics Education, 10, 363-385. https://doi.org/10.1007/s10763-011-9304-1

Van den Heuvel-Pauhuizen, M. y Buys, K. (2005). Young Children Learn Measurement and Geometry. Sense Publishers.

Van Hiele, P. M. (1986). Structure and insight. A theory of mathematics education. Academic Press.

Vanegas, Y. M. (2018). Percepción, interpretación y representación del espacio. En M. C. Muñoz-Catalán y J. Carrillo (Coords.), Didáctica de las matemáticas para maestros de Educación Infantil (pp. 213-242). Paraninfo.

Vanegas, Y., Prat, M. y Rubio, A. (2019). Characterization of the learning trajectory of Children aged six to eight years old when acquiring the notion of length measurement. En U. T. Jankvist, M. van den Heuvel-Panhuizen y M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (pp. 2381-2388). Freudenthal Group & Freudenthal Institute, Utrecht University y ERME.

Vanegas, Y., Rosell, C. y Giménez, J. (2021). Insights about constructing symmetry with 5-6-year-old children in an artistic context. En M. van den Heuvel-Panhuizen y A. Kullberg (Eds.), Mathematics education at preschool level: Proceedings of the 14th International Congress on Mathematical Education (pp. 11-15). ICME-14.

Downloads

Published

2025-07-25

How to Cite

Learning trajectories: a tool for learning and teaching mathematics in early childhood education. (2025). Edma 0-6: Educación Matemática En La Infancia, 14(1), 105-125. https://doi.org/10.24197/edmain.1.2025.105-125