Estimation of the propagation factor R0 of the COVID-19 using the Kermack-McKendrick model

Authors

DOI:

https://doi.org/10.24197/st.1.2022.257-272

Keywords:

infected, recovered, spread, mitigation, epidemiological threshold.

Abstract

Abstract: The SIR epidemic model is useful to measure the speed of spread of the COVID-19 infection in terms of the epidemiological threshold R0 over time. An ordinary differential mathematical model was developed to measure the behavior of COVID-19 in Peru, based on the experience in the control of Kermack – McKendrick infections. The rate of infected β and of recovered or eliminated γ was also estimated, using the official data sets of the World Health Organization, starting from the historical between March 07 and September 24, 2020 and; projected until October 28, 2021. Explaining that the lowest rate of infected will occur from June 30, 2021 β = 0.24. Evidence of an eradication prognosis for October 28, 2021 with a rate of infected (β = 0.21) and threshold (R0 = 0.03), in addition the accuracy of the model was quantified in 93.012%, with a 6.988% error COVID-19 mitigation mean percentage, with the temporal average value being R0 <1, so each person who contracts the disease will infect less than one person before dying or recovering, so the outbreak will disappear.

Keywords: infected, recovered, spread, mitigation, epidemiological threshold.

Downloads

Download data is not yet available.

Author Biographies

Carmen Milagro Viña, Universidad de Los Andes

PhD in Political Science from the Universidad Central de Venezuela. Researcher at the Centre for Political and Social Studies of Latin America. Media and Politics Research Group at the Universidad de Los Andes Mérida. Lecturer at the Instituto de Altos Estudios Diplomáticos Pedro Gual- Caracas. Researcher attached to the Lima-Peru Social Statistics Research Group.

Josefrank Pernalete Lugo, Universidad Centro Occidental Lisandro Alvarado

Chemical Engineer. Researcher at the Francisco de Miranda National Experimental University, El Sabino Nucleus, Punto Fijo, Falcón State. Master in Mathematics Education. Attached to the Lima-Peru Social Statistics Research Group.

References

Abdulmajeed, K., Adeleke, M., & Popoola, L. (2020). Onlineforecasting of COVID-19 cases in Nigeria using limited data. Journal Data in Brief, 20(1), https://doi.org/10.1016/j.dib.2020

Arango-Londoño, D., Ortega-Lenis, D., Muñoz, E., Cuartas, D., Caicedo, D., Mena, J., Torres, M., & Méndez, F. (2020). Predicciones de un modelo SEIR para casos de COVID-19 en Cali, Colombia. Revista de Salud Pública, 22(2), 1-6. doi: https://doi.org/10.15446/rsap.v22n2.86432

Caparó, F., & Del Carmen Sara, J. (2020). Coronavirus y las amenazas a la salud mundial. Horizonte MéDico (Lima), 20(1), 4-5. https://doi.org/10.24265/horizmed.2020.v20n1.01

Correa-Cuadros, Jennifer P., & Muñoz-Rodríguez, Manuel A... (2020). SARS-COV.2/COVID-19 en Colombia: tendencias, predicciones y tensiones sobre el sistema sanitario. Revista de Salud Pública, 22(2), e386614. Epub July 30, 2020. https://dx.doi.org/10.15446/rsap.v22n2.86614

Díaz Pinzón J. E. (2020). Uso de modelo predictivo para la dinámica de transmisión del COVID-19 en Colombia. Revista Repertorio De Medicina Y Cirugía, 34-44. https://doi.org/10.31260/RepertMedCir.01217372.1056

Díaz-Narváez, Víctor, San-Martín-Roldán, David, Calzadilla-Núñez, Aracelis, San-Martín-Roldán, Pablo, Parody-Muñoz, Alexander, & Robledo-Veloso, Gonzalo. (2020). Which curve provides the best explanation of the growth in confirmed COVID-19 cases in Chile?. Revista Latino-Americana de Enfermagem, 28, e3346. Epub June 26, 2020. https://doi.org/10.1590/1518-8345.4493.3346

Du, Z., Wang, L., Cauchemez, S., Xu, X., Wang, X., Cowling, B.J., Meyers, L. (2020). Riesgo de transporte de la enfermedad por coronavirus desde Wuhan a otras ciudades de China. Enfermedades infecciosas emergentes, 26(5), 1049-1052. https://dx.doi.org/10.3201/eid2605.200146

Enoki-Miñano, E, & Ruiz-Barrueto, M. (2020). Danger of major outbreaks of COVID-19 in the Peruvian prison population. Revista Española de Sanidad Penitenciaria, 22(2), 91-92. Epub 20 de julio de 2020. https://dx.doi.org/10.18176/resp.00016

Gonzales-Castillo, Jorge R., Varona-Castillo, Luis, Domínguez-Morante, Moisés G., & Ocaña-Gutierrez, Víctor R. (2020). Pandemia de la coviD-19 y las Políticas de Salud Pública en el Perú: marzo-mayo 2020. Revista de Salud Pública, 22(2), e387373. Epub June 24, 2020. https://dx.doi.org/10.15446/rsap.v22n2.87373

González-Jaramillo, V., González-Jaramillo, N., Gómez-Restrepo, C., Franco, O., Palacio-Acosta, C., & Gómez-López, A. (2020). Proyecciones de impacto de la pandemia COVID-19 en la población colombiana, según medidas de mitigación. Datos preliminares de modelos epidemiológicos para el periodo del 18 de marzo al 18 de abril de 2020. Revista de Salud Pública, 22(2), 1-6. doi: https://doi.org/10.15446/rsap.v22n2.85789

Hamidah N., Herlina J., Evi R., Ismail H. (2020) Model of Spread of Infectious Diseases. Systematic Reviews in Pharmacy, 11(2), 685-689. doi: http://dx.doi.org/10.5530/srp.2020.2.99

Kaxiras, E., Neofotistos, G., & Angelaki, E. (2020). The first 100 days: Modeling the evolution of the COVID-19 pandemic. Chaos, Solitons and Fractals, 138. https://doi.org/10.1016/j.chaos.2020.110114 3

Li R., Xuyu C., Ying W., Wenwen W., Ling Z., Xiaodong T. (2019). Risk Factors of Healthcare Workers With Coronavirus Disease 2019: A Retrospective Cohort Study in a Designated Hospital of Wuhan in China, Clinical Infectious Diseases, ciaa287, https://doi.org/10.1093/cid/ciaa287

Lozano-Vargas, A. (2020). Impacto de la epidemia del Coronavirus (COVID-19) en la salud mental del personal de salud y en la población general de China. Revista de Neuro-Psiquiatría, 83(1), 51-56. https://dx.doi.org/10.20453/rnp.v83i1.3687

Magno, L., Rossi, T. A., Mendonça-Lima, F.W., Santos, C. C., Campos, G. B., Marques, L., Pereira, M., Prado, N.M., & Dourado, I.. (2020). Desafios e propostas para ampliação da testagem e diagnóstico para COVID-19 no Brasil. Ciência & Saúde Coletiva, 25(9), 3355-3364. Epub August 28, 2020. https://doi.org/10.1590/1413-81232020259.17812020

Maguiña Vargas, Ciro. (2020). Reflexiones sobre el COVID-19, el Colegio Médico del Perú y la Salud Pública. Acta Médica Peruana, 37(1), 8-10. https://dx.doi.org/10.35663/amp.2020.371.929

Manrique-Abril, Fred G., Agudelo-Calderon, Carlos A., González-Chordá, Víctor M., Gutiérrez-Lesmes, Oscar, Téllez-Piñerez, Cristian F., & Herrera-Amaya, Giomar. (2020). Modelo SIR de la pandemia de COVID-19 en Colombia. Revista de Salud Pública, 22(2), e185977. Epub April 07, 2020. https://dx.doi.org/10.15446/rsap.v22.85977

Martins, C., Gomes, R., Zanetti, Muller, E. V., Borges, P., Coradassi, C. E., & Montiel, E. M. (2020). Predictive model for COVID-19 incidence in a medium-sized municipality in Brazil (Ponta Grossa, Paraná). Texto & Contexto - Enfermagem, 29, e20200154. Epub July 31, 2020. https://doi.org/10.1590/1980-265x-tce-2020-0154

Organización Mundial de la Salud. (9 de julio de 2020). ¿Cómo se transmite el coronavirus que causa COVID-19?. https://www.who.int/news-room/q-a-detail/q-a-how-is-covid-19-transmitted

Paiva H.M., Afonso R.J.M., de Oliveira I.L., Garcia G.F. (2020). A data-driven model to describe and forecast the dynamics of COVID-19 transmission. PLoS ONE 15(7): e0236386. https://doi.org/10.1371/journal.pone.0236386

Pharaon, J. & Bauch, C. (2018). The influence of social behaviour on competition between virulent pathogen strains. Journal of Theoretical Biology, 455(1), 47-53. doi: https://doi.org/10.1016/j.jtbi.2018.06.028

Pinasco, J. P. (2020). Las Simulaciones: Otras herramientas para entender una epidemia. Revista De Educación Matemática, 35(2), 35-50. Recuperado a partir de https://revistas.unc.edu.ar/index.php/REM/article/view/29728

Sánchez-Duque, J. A., Arce-Villalobos, L. R., & Rodríguez-Morales, A. J. (2020). Enfermedad por Coronavirus 2019 (COVID-19) en América Latina: Papel de la atención primaria en la preparación y respuesta. Atención Primaria. doi:10.1016/j.aprim.2020.04.001

Santaella-Tenorio, Julián. (2020). SARS-CoV-2 diagnostic testing alternatives for Latin America. Colombia Médica, 51(2), e4272. Epub May 11, 2020. https://dx.doi.org/10.25100/cm.v51i2.4272

Trujillo Sainz, J. (2020). Metodología para la organización de los Recursos Educativos Abiertos en la carrera de Educación Laboral-Informática. Mendive. Revista de Educación, 18(1), 102-115. Recuperado de http://mendive.upr.edu.cu/index.php/MendiveUPR/article/view/1672

Viceconte, G., & Petrosillo, N. (2020). COVID-19 R0: Magic number or conundrum?. Infectious disease reports, 12(1), 8516. https://doi.org/10.4081/idr.2020.8516

World Health Organization. (2020). Visible body: WHO Coronavirus Disease (COVID-19) Dashboard. Ginebra, SUI.: WHO Health Emergency Dashboard. Recuperado de https://covid19.who.int/

Zhao, S., Chen, H. (2020). Modeling the epidemic dynamics and control of COVID-19 outbreak in China. Quant Biol 8, 11–19. https://doi.org/10.1007/s40484-020-0199-0

Downloads

Published

11/02/2022 — Updated on 09/06/2022

Versions