Intermediate forms and technological change: Exploring the links between technology and topology

Authors

DOI:

https://doi.org/10.24197/st.2.2022.96-123

Keywords:

technology, technological change, topology, STS ontologies

Abstract

The study of technology and technological change is a dynamic field where diverse disciplines from the social sciences and the humanities converge.  It is possible to find several ontologies that incorporate topological referents as heuristic metaphors and simple methodological devices in technological studies.  The paper examines two related topological concepts, continuity and convergence, based on the notions of accumulation of knowledge and a combination of pre-existing technologies to arrive at the notions of convergence and inflation.  The paper concludes with some future research guidelines that formally explore the potential of topology in technology and technological change studies.

Downloads

Download data is not yet available.

References

Abernathy, W. J., & Utterback, J. (1978). Patterns of Industrial Innovation. Technology Review(50), 41-47.

Aluja, J. G., & Lafuente, A. M. G. (2012). Topology. In Towards an Advanced Modelling of Complex Economic Phenomena: Pretopological and Topological Uncertainty Research Tools (pp. 71-106). Berlin, Heidelberg: Springer Berlin Heidelberg.

Anderson, P., & Tushman, M. L. (1990). Technological Discontinuities and Dominant Designs: A Cyclical Model of Technological Change. Administrative Science Quarterly, 35(4), 604-633. doi:10.2307/2393511

Arthur, W. B. (2009). The Nature of Technology. New York, USA.: Free Press.

Basalla, G. (2011[1988]). La Evolución de la Tecnología. Barcelona, España: Editorial Crítica.

Bettencourt, L. M. A., Kaiser, D. I., & Kaur, J. (2009). Scientific discovery and topological transitions in collaboration networks. Journal of Infometrics, 3(3), 210-221. doi:https://doi.org/10.1016/j.joi.2009.03.001

Brem, A., Nylund, P. A., & Schuster, G. (2016). Innovation and de facto standardisation: The influence of dominant design on innovative performance, radical innovation, and process innovation. Technovation, 50-51, 79-88. doi:https://doi.org/10.1016/j.technovation.2015.11.002

Cerulli, G. (2014). The Impact of Technological Capabilities on Invention: An Investigation Based on Country Responsiveness Scores. World Development, 59, 147-165. doi:https://doi.org/10.1016/j.worlddev.2014.01.019

Cusumano, M. A., Mylonadis, Y., & Rosenbloom, R. S. (1992). Strategic Maneuvering and Mass-Market Dynamics: The Triumph of VHS over Beta. The Business History Review, 66(1), 51-94. doi:10.2307/3117053

Dafoe, A. (2015). On Technological Determinism: A Typology, Scope Conditions, and a Mechanism. Science, Technology, & Human Values, 40(6), 1047-1076. doi:https://doi.org/10.1177/0162243915579283

Dosi, G. (1982). Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Research Policy, 11(3), 147-162. doi:https://doi.org/10.1016/0048-7333(82)90016-6

Dotson, T. (2015). Technological Determinism and Permissionless Innovation as Technocratic Governing Mentalities: Psychocultural Barriers to the Democratization of Technology. Engaging Science, Technology, and Society, 1, 98-120. doi: http://dx.doi.org/10.17351/ests2015.009

Elder-Vass, D. (2015). Disassembling Actor-network Theory. Philosophy of the Social Sciences, 45(1), 100-121. doi:10.1177/0048393114525858

Etzkowitz, H. (2003). Innovation in Innovation: The Triple Helix of University-Industry-Government Relations. Social Science Information, 42(3), 293-337. doi:10.1177/05390184030423002

Fagerberg, J., & Srholec, M. (2008). National innovation systems, capabilities and economic development. Research Policy(37), 1417-1435. doi:10.1016/j.respol.2008.06.003

Funk, R. J., & Owen-Smith, J. (2017). A Dynamic Network Measure of Technological Change. Management Science, 63(3), 791-817. doi:10.1287/mnsc.2015.2366

Geels, F. W. (2009). Foundational ontologies and multi-paradigm analysis, applied to the socio-technical transition from mixed farming to intensive pig husbandry (1930–1980). Technology Analysis & Strategic Management, 21(7), 805-832. doi:10.1080/09537320903182280

Geels, F. W. (2010). Ontologies, socio-technical transitions (to sustainability), and the multi-level perspective. Research Policy, 39(4), 495-510. doi:https://doi.org/10.1016/j.respol.2010.01.022

Gilfillan, S. C. (1952). The Prediction of Technical Change. The Review of Economics and Statistics, 34(4), 368-385. doi:10.2307/1926864

Gilfillan, S. C. (1970[1935]). The Sociology of Invention. Cambridge, Massachusetts, USA: MIT Press.

Godin, B. (2010). Innovation Without the Word: William F. Ogburn's Contribution to the Study of Technological Innovation. Minerva, 48(3), 277-307. doi:10.1007/s11024-010-9151-1

Hacklin, F., Marxt, C., & Fahrni, F. (2010). An evolutionary perspective on convergence: inducing a stage model of inter-industry innovation. International Journal of Technology Management 49(1/2/3), 220-249. doi:10.1504/IJTM.2010.029419

Hagan, S. M. (2007). The Imagined And The Concrete: What is an Artifact? . Artifact, 1(1), 23-25. doi:https://doi.org/10.1080/17493460600610855

Høyer, K. G. (2008). The history of alternative fuels in transportation: The case of electric and hybrid cars. Utilities Policy, 16(2), 63-71. doi:https://doi.org/10.1016/j.jup.2007.11.001

Klein, H. K., & Kleinman, D. L. (2002). The Social Construction of Technology: Structural Considerations. Science, Technology, & Human Values, 27(1), 28-52. doi:https://doi.org/10.1177/016224390202700102

Kudina, O., & Verbeek, P.-P. (2018). Ethics from Within: Google Glass, the Collingridge Dilemma, and the Mediated Value of Privacy. Science, Technology, & Human Values, 44(2), 291-314. doi:10.1177/0162243918793711

Kuo, C. I., Wu, C. H., & Lin, B. W. (2019). Gaining from scientific knowledge: the role of knowledge accumulation and knowledge combination. R&D Management, 49(2), 252-263. doi:https://doi.org/10.1111/radm.12322

Larrión, J. (2019). Teoría del actor-red. Síntesis y evaluación de la deriva postsocial de Bruno Latour / Actor-Network Theory. Synthesis and Evaluation of Bruno Latour’s Post-Social Drift. Revista Española de Sociología, 28(2), 323-341. doi:10.22325/fes/res.2019.03

Lundvall, B. Å. (2007). National Innovation Systems—Analytical Concept and Development Tool. Industry and Innovation, 14(1), 95-119. doi:10.1080/13662710601130863

Manetti, M. (2015). Topology. Cham Heidelberg New York Dordrecht London: Springer.

Marres, N. (2012). On Some Uses and Abuses of Topology in the Social Analysis of Technology (Or the Problem with Smart Meters). Theory, Culture & Society, 29(4-5), 288-310. doi:https://doi.org/10.1177/0263276412454460

Mason, W. W. (1931). Trevithick's First Rail Locomotive. Transactions of the Newcomen Society, 12(1), 85-103. doi:10.1179/tns.1931.007

Metcalfe, S., & Ramlogan, R. (2008). Innovation systems and the competitive process in developing economies. The Quarterly Review of Economics and Finance, 48(2), 433-446. doi:https://doi.org/10.1016/j.qref.2006.12.021

Moore, G. H. (2007). The evolution of the concept of homeomorphism. Historia Mathematica, 34(3), 333-343. doi:https://doi.org/10.1016/j.hm.2006.07.006

Murmann, J. P., & Frenken, K. (2006). Toward a systematic framework for research on dominant designs, technological innovations, and industrial change. Research Policy, 35(7), 925-952. doi:https://doi.org/10.1016/j.respol.2006.04.011

Nachum, L., & Keeble, D. (2003). Neo-Marshallian Clusters and Global Networks: The Linkages of Media Firms in Central London. Long Range Planning 36(5), 459-480. doi:https://doi.org/10.1016/S0024-6301(03)00114-6

Nelson, R. R., & Nelson, K. (2002). Technology, institutions, and innovation systems. Research Policy, 31(2), 265-272. doi:http://dx.doi.org/10.1016/s0048-7333(01)00140-8

Niemi, P., Huiskonen, J., & Kärkkäinen, H. (2009). Understanding the knowledge accumulation process—Implications for the adoption of inventory management techniques. International Journal of Production Economics, 118(1), 160-167. doi:https://doi.org/10.1016/j.ijpe.2008.08.028

Ogburn, W. F. (1922). Social change with respect to culture and original nature. New York: B. W. Huebsch, Inc.

Pel, B. (2014). Intersections in system innovation: a nested-case methodology to study co-evolving innovation journeys. Technology Analysis & Strategic Management, 26(3), 307-320. doi:10.1080/09537325.2013.850656

Pinch, T. J., & Bijker, W. E. (1984). The Social Construction of Facts and Artefacts: or How the Sociology of Science and the Sociology of Technology might Benefit Each Other. Social Studies of Science, 14(3), 399-441. doi:https://doi.org/10.1177/030631284014003004

Saviotti, P. P. (2018[1991]). The Role of Variety in Economic and Technological Development. In P. P. Saviotti & S. Metcalfe (Eds.), Evolutionary Theories of Economic and Technological Change (Vol. 44, pp. 172-208). London & New York: Routledge. Taylor & Francis Group. Harwood Academic Publisher.

Saviotti, P. P., & Metcalfe, S. (2018[1991]). Evolutionary Theories of Economic and Technological Change (Vol. 44). London & New York: Routledge. Taylor & Francis Group. Harwood Academic Publisher.

Schiffer, M. B. (2002). Studying Technological Differentiation: The Case of 18th-Century Electrical Technology. American Anthropologist, 104(4), 1148-1161. Retrieved from http://www.jstor.org/stable/3567103

Shapiro, C., & Varian, H. R. (1999). The Art of Standards Wars. California Management Review, 41(2), 8-32. doi:10.2307/41165984

Shi, X., & Zhang, Q. (2018). Inbound open innovation and radical innovation capability: The moderating role of organisational inertia. Journal of Organizational Change Management, 31(3), 581-597. doi:10.1108/JOCM-07-2017-0262

Solée, R. V., Valverde, S., Casals, M. R., Kauffman, S. A., Farmer, D., & Eldredge, N. (2013). The evolutionary ecology of technological innovations. Complexity, 18(4), 15-27. doi:10.1002/cplx.21436

Sood, A., & Tellis, G. J. (2005). Technological Evolution and Radical Innovation. Journal of Marketing, 69(3), 152-168. doi:10.1509/jmkg.69.3.152.66361

Sovacool, B. K., & Hess, D. J. (2017). Ordering theories: Typologies and conceptual frameworks for socio-technical change. Social Studies of Science, 47(5), 703-750. doi:10.1177/0306312717709363

Spulber, D. F. (2013). INNOVATION ECONOMICS: THE INTERPLAY AMONG TECHNOLOGY STANDARDS, COMPETITIVE CONDUCT, AND ECONOMIC PERFORMANCE. Journal of Competition Law & Economics, 9(4), 777-825. doi:10.1093/joclec/nht041

Utterback, J. M. (1996). Mastering the Dynamics of Innovation. Boston, Massachusetts: Harvard Business School Press.

Valverde, S., Solée, R. V., Bedau, M. A., & Packard, N. (2007). Topology and evolution of technology innovation networks. PHYSICAL REVIEW E, 76(5). doi:https://doi.org/10.1103/PhysRevE.76.056118

Volti, R. (2004). William F. Ogburn "Social Change with Respect to Culture and Original Nature". [Social Change with Respect to Culture and Original Nature, William F. Ogburn]. Technology and Culture, 45(2), 396-405. Retrieved from http://www.jstor.org/stable/40060750

Waldmann, S. (2014). Topology. An Introduction Cham, Heidelberg, New York, Dordrecht, London: Springer

Downloads

Published

11/09/2022 — Updated on 11/09/2022

Versions

How to Cite

Gomez-Valenzuela, V. (2022). Intermediate forms and technological change: Exploring the links between technology and topology. Sociología Y Tecnociencia, 12(2), 96–123. https://doi.org/10.24197/st.2.2022.96-123