Intermediate forms and technological change: Exploring the links between technology and topology
DOI:
https://doi.org/10.24197/st.2.2022.96-123Keywords:
technology, technological change, topology, STS ontologiesAbstract
The study of technology and technological change is a dynamic field where diverse disciplines from the social sciences and the humanities converge. It is possible to find several ontologies that incorporate topological referents as heuristic metaphors and simple methodological devices in technological studies. The paper examines two related topological concepts, continuity and convergence, based on the notions of accumulation of knowledge and a combination of pre-existing technologies to arrive at the notions of convergence and inflation. The paper concludes with some future research guidelines that formally explore the potential of topology in technology and technological change studies.
Downloads
References
Abernathy, W. J., & Utterback, J. (1978). Patterns of Industrial Innovation. Technology Review(50), 41-47.
Aluja, J. G., & Lafuente, A. M. G. (2012). Topology. In Towards an Advanced Modelling of Complex Economic Phenomena: Pretopological and Topological Uncertainty Research Tools (pp. 71-106). Berlin, Heidelberg: Springer Berlin Heidelberg.
Anderson, P., & Tushman, M. L. (1990). Technological Discontinuities and Dominant Designs: A Cyclical Model of Technological Change. Administrative Science Quarterly, 35(4), 604-633. doi:10.2307/2393511
Arthur, W. B. (2009). The Nature of Technology. New York, USA.: Free Press.
Basalla, G. (2011[1988]). La Evolución de la Tecnología. Barcelona, España: Editorial Crítica.
Bettencourt, L. M. A., Kaiser, D. I., & Kaur, J. (2009). Scientific discovery and topological transitions in collaboration networks. Journal of Infometrics, 3(3), 210-221. doi:https://doi.org/10.1016/j.joi.2009.03.001
Brem, A., Nylund, P. A., & Schuster, G. (2016). Innovation and de facto standardisation: The influence of dominant design on innovative performance, radical innovation, and process innovation. Technovation, 50-51, 79-88. doi:https://doi.org/10.1016/j.technovation.2015.11.002
Cerulli, G. (2014). The Impact of Technological Capabilities on Invention: An Investigation Based on Country Responsiveness Scores. World Development, 59, 147-165. doi:https://doi.org/10.1016/j.worlddev.2014.01.019
Cusumano, M. A., Mylonadis, Y., & Rosenbloom, R. S. (1992). Strategic Maneuvering and Mass-Market Dynamics: The Triumph of VHS over Beta. The Business History Review, 66(1), 51-94. doi:10.2307/3117053
Dafoe, A. (2015). On Technological Determinism: A Typology, Scope Conditions, and a Mechanism. Science, Technology, & Human Values, 40(6), 1047-1076. doi:https://doi.org/10.1177/0162243915579283
Dosi, G. (1982). Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Research Policy, 11(3), 147-162. doi:https://doi.org/10.1016/0048-7333(82)90016-6
Dotson, T. (2015). Technological Determinism and Permissionless Innovation as Technocratic Governing Mentalities: Psychocultural Barriers to the Democratization of Technology. Engaging Science, Technology, and Society, 1, 98-120. doi: http://dx.doi.org/10.17351/ests2015.009
Elder-Vass, D. (2015). Disassembling Actor-network Theory. Philosophy of the Social Sciences, 45(1), 100-121. doi:10.1177/0048393114525858
Etzkowitz, H. (2003). Innovation in Innovation: The Triple Helix of University-Industry-Government Relations. Social Science Information, 42(3), 293-337. doi:10.1177/05390184030423002
Fagerberg, J., & Srholec, M. (2008). National innovation systems, capabilities and economic development. Research Policy(37), 1417-1435. doi:10.1016/j.respol.2008.06.003
Funk, R. J., & Owen-Smith, J. (2017). A Dynamic Network Measure of Technological Change. Management Science, 63(3), 791-817. doi:10.1287/mnsc.2015.2366
Geels, F. W. (2009). Foundational ontologies and multi-paradigm analysis, applied to the socio-technical transition from mixed farming to intensive pig husbandry (1930–1980). Technology Analysis & Strategic Management, 21(7), 805-832. doi:10.1080/09537320903182280
Geels, F. W. (2010). Ontologies, socio-technical transitions (to sustainability), and the multi-level perspective. Research Policy, 39(4), 495-510. doi:https://doi.org/10.1016/j.respol.2010.01.022
Gilfillan, S. C. (1952). The Prediction of Technical Change. The Review of Economics and Statistics, 34(4), 368-385. doi:10.2307/1926864
Gilfillan, S. C. (1970[1935]). The Sociology of Invention. Cambridge, Massachusetts, USA: MIT Press.
Godin, B. (2010). Innovation Without the Word: William F. Ogburn's Contribution to the Study of Technological Innovation. Minerva, 48(3), 277-307. doi:10.1007/s11024-010-9151-1
Hacklin, F., Marxt, C., & Fahrni, F. (2010). An evolutionary perspective on convergence: inducing a stage model of inter-industry innovation. International Journal of Technology Management 49(1/2/3), 220-249. doi:10.1504/IJTM.2010.029419
Hagan, S. M. (2007). The Imagined And The Concrete: What is an Artifact? . Artifact, 1(1), 23-25. doi:https://doi.org/10.1080/17493460600610855
Høyer, K. G. (2008). The history of alternative fuels in transportation: The case of electric and hybrid cars. Utilities Policy, 16(2), 63-71. doi:https://doi.org/10.1016/j.jup.2007.11.001
Klein, H. K., & Kleinman, D. L. (2002). The Social Construction of Technology: Structural Considerations. Science, Technology, & Human Values, 27(1), 28-52. doi:https://doi.org/10.1177/016224390202700102
Kudina, O., & Verbeek, P.-P. (2018). Ethics from Within: Google Glass, the Collingridge Dilemma, and the Mediated Value of Privacy. Science, Technology, & Human Values, 44(2), 291-314. doi:10.1177/0162243918793711
Kuo, C. I., Wu, C. H., & Lin, B. W. (2019). Gaining from scientific knowledge: the role of knowledge accumulation and knowledge combination. R&D Management, 49(2), 252-263. doi:https://doi.org/10.1111/radm.12322
Larrión, J. (2019). Teoría del actor-red. Síntesis y evaluación de la deriva postsocial de Bruno Latour / Actor-Network Theory. Synthesis and Evaluation of Bruno Latour’s Post-Social Drift. Revista Española de Sociología, 28(2), 323-341. doi:10.22325/fes/res.2019.03
Lundvall, B. Å. (2007). National Innovation Systems—Analytical Concept and Development Tool. Industry and Innovation, 14(1), 95-119. doi:10.1080/13662710601130863
Manetti, M. (2015). Topology. Cham Heidelberg New York Dordrecht London: Springer.
Marres, N. (2012). On Some Uses and Abuses of Topology in the Social Analysis of Technology (Or the Problem with Smart Meters). Theory, Culture & Society, 29(4-5), 288-310. doi:https://doi.org/10.1177/0263276412454460
Mason, W. W. (1931). Trevithick's First Rail Locomotive. Transactions of the Newcomen Society, 12(1), 85-103. doi:10.1179/tns.1931.007
Metcalfe, S., & Ramlogan, R. (2008). Innovation systems and the competitive process in developing economies. The Quarterly Review of Economics and Finance, 48(2), 433-446. doi:https://doi.org/10.1016/j.qref.2006.12.021
Moore, G. H. (2007). The evolution of the concept of homeomorphism. Historia Mathematica, 34(3), 333-343. doi:https://doi.org/10.1016/j.hm.2006.07.006
Murmann, J. P., & Frenken, K. (2006). Toward a systematic framework for research on dominant designs, technological innovations, and industrial change. Research Policy, 35(7), 925-952. doi:https://doi.org/10.1016/j.respol.2006.04.011
Nachum, L., & Keeble, D. (2003). Neo-Marshallian Clusters and Global Networks: The Linkages of Media Firms in Central London. Long Range Planning 36(5), 459-480. doi:https://doi.org/10.1016/S0024-6301(03)00114-6
Nelson, R. R., & Nelson, K. (2002). Technology, institutions, and innovation systems. Research Policy, 31(2), 265-272. doi:http://dx.doi.org/10.1016/s0048-7333(01)00140-8
Niemi, P., Huiskonen, J., & Kärkkäinen, H. (2009). Understanding the knowledge accumulation process—Implications for the adoption of inventory management techniques. International Journal of Production Economics, 118(1), 160-167. doi:https://doi.org/10.1016/j.ijpe.2008.08.028
Ogburn, W. F. (1922). Social change with respect to culture and original nature. New York: B. W. Huebsch, Inc.
Pel, B. (2014). Intersections in system innovation: a nested-case methodology to study co-evolving innovation journeys. Technology Analysis & Strategic Management, 26(3), 307-320. doi:10.1080/09537325.2013.850656
Pinch, T. J., & Bijker, W. E. (1984). The Social Construction of Facts and Artefacts: or How the Sociology of Science and the Sociology of Technology might Benefit Each Other. Social Studies of Science, 14(3), 399-441. doi:https://doi.org/10.1177/030631284014003004
Saviotti, P. P. (2018[1991]). The Role of Variety in Economic and Technological Development. In P. P. Saviotti & S. Metcalfe (Eds.), Evolutionary Theories of Economic and Technological Change (Vol. 44, pp. 172-208). London & New York: Routledge. Taylor & Francis Group. Harwood Academic Publisher.
Saviotti, P. P., & Metcalfe, S. (2018[1991]). Evolutionary Theories of Economic and Technological Change (Vol. 44). London & New York: Routledge. Taylor & Francis Group. Harwood Academic Publisher.
Schiffer, M. B. (2002). Studying Technological Differentiation: The Case of 18th-Century Electrical Technology. American Anthropologist, 104(4), 1148-1161. Retrieved from http://www.jstor.org/stable/3567103
Shapiro, C., & Varian, H. R. (1999). The Art of Standards Wars. California Management Review, 41(2), 8-32. doi:10.2307/41165984
Shi, X., & Zhang, Q. (2018). Inbound open innovation and radical innovation capability: The moderating role of organisational inertia. Journal of Organizational Change Management, 31(3), 581-597. doi:10.1108/JOCM-07-2017-0262
Solée, R. V., Valverde, S., Casals, M. R., Kauffman, S. A., Farmer, D., & Eldredge, N. (2013). The evolutionary ecology of technological innovations. Complexity, 18(4), 15-27. doi:10.1002/cplx.21436
Sood, A., & Tellis, G. J. (2005). Technological Evolution and Radical Innovation. Journal of Marketing, 69(3), 152-168. doi:10.1509/jmkg.69.3.152.66361
Sovacool, B. K., & Hess, D. J. (2017). Ordering theories: Typologies and conceptual frameworks for socio-technical change. Social Studies of Science, 47(5), 703-750. doi:10.1177/0306312717709363
Spulber, D. F. (2013). INNOVATION ECONOMICS: THE INTERPLAY AMONG TECHNOLOGY STANDARDS, COMPETITIVE CONDUCT, AND ECONOMIC PERFORMANCE. Journal of Competition Law & Economics, 9(4), 777-825. doi:10.1093/joclec/nht041
Utterback, J. M. (1996). Mastering the Dynamics of Innovation. Boston, Massachusetts: Harvard Business School Press.
Valverde, S., Solée, R. V., Bedau, M. A., & Packard, N. (2007). Topology and evolution of technology innovation networks. PHYSICAL REVIEW E, 76(5). doi:https://doi.org/10.1103/PhysRevE.76.056118
Volti, R. (2004). William F. Ogburn "Social Change with Respect to Culture and Original Nature". [Social Change with Respect to Culture and Original Nature, William F. Ogburn]. Technology and Culture, 45(2), 396-405. Retrieved from http://www.jstor.org/stable/40060750
Waldmann, S. (2014). Topology. An Introduction Cham, Heidelberg, New York, Dordrecht, London: Springer
Downloads
Published
Versions
- 11/09/2022 (3)
- 11/09/2022 (2)
- 11/09/2022 (1)
Issue
Section
License
Copyright (c) 2022 Victor Gomez-Valenzuela

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Sociología y tecnociencia is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
The journal allows the authors to retain publishing rights. Authors may reprint their articles in other media without having to request authorization, provided they indicate that the article was originally published in Sociología y Tecnociencia.