Analysis of the social acceptance of emerging technology. The case of Urban Air Mobility

Authors

DOI:

https://doi.org/10.24197/st.2.2025.1-24

Keywords:

social acceptance, social studies, emerging technology, society and technology, disruptive technology

Abstract

The emerging technology called Urban Air Mobility is the result of technological innovation in the aviation industry. This new and disruptive mode of air transport (of passengers and cargo), of an exclusively urban and interurban nature, will use vertical takeoff and landing aircraft powered by electric batteries, and will require, as ground support, a new dedicated infrastructure called a vertiport. Various types of services are foreseen for this new mode of transport, both commercial and for public service. Now, although Urban Air Mobility presents relevant opportunities and benefits for communities, one of the main challenges that this emerging technology faces is its social acceptance, since, on the other hand, there are several potential impacts of this new technology (environmental, security, social equity, violations of privacy, land use, etc.). Therefore, this article analyses the social acceptance of Urban Air Mobility using an analytical framework that identifies the fundamental principles whose management and achievement would be key to the social adoption of this emerging public transport technology.

Downloads

Download data is not yet available.

Author Biography

Oscar Díaz Olariaga, Universidad Santo Tomás

Doctor Ingeniero Aeronáutico (Universidad Politécnica de Madrid, España); Doctor en CC. Económicas y Empresariales (UNED, España).

Profesor Titular, Facultad de Ingeniería Civil, Universidad Santo Tomás (Bogotá, Colombia).

 

References

AIRBUS (2017). Rethinking urban air mobility. Toulouse: AIRBUS. https://acortar.link/yhOgpw

Al-Rubaye, S., Tsourdos, A., y Namuduri, K. (2023). Advanced Air Mobility Operation and Infrastructure for Sustainable Connected eVTOL Vehicle. Drones, 7, 319. DOI: 10.3390/drones7050319

Álvarez, L., Cohen, J., Bryan, A., y Weinert, A. (2021). Demand and Capacity Modeling for Advanced Air Mobility. AIAA Aviation Forum. DOI: 10.2514/6.2021-2381

Anand, A., Kaur, H., Justin, C., Zaidi, T., y Mavris, D. (2021). A scenario-based evaluation of global urban air mobility demand. AIAA Scitech Forum. DOI: 10.2514/6.2021-1516

ASD (2023). Urban Air Mobility and Sustainable Development. Brussels: Aerospace, Security and Defence Industries Association of Europe.

Birrell, S., Payre, W., Zdanowicz, K., y Herriotts, P. (2022). Urban air mobility infrastructure design: Using virtual reality to capture user experience within the world’s first urban airport. Applied Ergonomics, 105, 103843. DOI: 10.1016/j.apergo.2022.103843

Biehle, T. (2022). Social Sustainable Urban Air Mobility in Europe. Sustainability, 14, 9312. DOI: https://doi.org/10.3390/su14159312

BOEING (2018). Flight path for the future of mobility. BOEING. https://acortar.link/zcfCpF

Boon, W., y Moors, E., (2008). Exploring emerging technologies using metaphors: astudy of orphan drugs and pharmacogenomics. Social Science & Medicine, 66(9), 1915–1927. DOI: https://doi.org/10.1016/j.socscimed.2008.01.012

Brelje, B., y Martins, J. (2019). Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches. Progress in Aerospace Sciences, 104, 1-19. DOI: 10.1016/j.paerosci.2018.06.004

Brunelli, M., Ditta, C., y Postorino, M. (2023). New infrastructures for Urban Air Mobility systems: A systematic review on vertiport location and capacity. Journal of Air Transport Management, 112, 102460. DOI: 10.1016/j.jairtraman.2023.102460

Bryce Tech (2023). Advanced Air Mobility. Alexandria (VA): Bryce Tech.

Çetin, E., Cano, A., Deransy, R., Tres, S., y Barrado, C. (2022). Implementing mitigations for improving societal acceptance of Urban Air Mobility. Drones, 2022, 6, 28. DOI: https://doi.org/10.3390/drones6020028

Cohen, A., Shaheen, S., y Farrar, E. (2021). Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges. IEEE Transactions on Intelligent Transportation Systems. DOI: 10.1109/TITS.2021.3082767

Cohen, A., y Shaheen, S. (2021). Urban Air Mobility: Opportunities and Obstacles. Working Paper. Transportation Sustainability Research Center, University of California (Berkeley).

Davis, F., Bagozzi, R., y Warshaw, P. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8). 982–1003. DOI: https://doi.org/10.1287/mnsc.35.8.982

Davis, F. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–339. DOI: https://doi.org/10.2307/249008

del Rosario, R., Davis, T., Dyment, M., y Cohen, K. (2021). Infrastructure to Support Advanced Autonomous Aircraft Technologies in Ohio. Columbus: Ohio Department of Transportation.

Díaz Olariaga, O. (2018). Análisis de mitigación de ruido aeroportuario. El caso del Aeropuerto Internacional de Bogotá-El Dorado (Colombia). Ciudad y Territorio Estudios Territoriales, 197, 557-576.

EASA (2022). Vertiports. Cologne: European Union Aviation Safety Agency.

EASA (2021). Study on the societal acceptance of Urban Air Mobility in Europe. Cologne: European Union Aviation Safety Agency.

Eissfeldt, H. (2020). Sustainable urban air mobility supported with participatory noise sensing. Sustainability, 12(8), 3320, DOI: https://doi.org/10.3390/su12083320

FAA (2023). Urban Air Mobility (UAM). Concept of Operations. Washington DC: Federal Aviation Administration, U.S. Department of Transportation.

FAA (2022). Memorandum. Vertiport Design. Washington DC: Federal Aviation Administration, U.S. Department of Transportation.

Farshchian, B., y Dahl, Y. (2015). The role of ICT in addressing the challenges of age-related falls: A research agenda based on a systematic mapping of the literature. Personal and Ubiquitous Computing, 19(3), 649–666. DOI: 10.1007/s00779-015-0852-1

Fu, M., Straubinger, A., y Schaumeier, J. (2022). Scenario-based demand assessment of urban air mobility in the greater Munich area. Journal of Air Transportation, 30(4). DOI: https://doi.org/10.2514/1.D0275

Fu, M., Rothfeld, R. y Antoniou, C. (2019). Exploring preferences for transportation modes in an Urban Air Mobility environment: Munich case study. Transportation Research Record. DOI: 10.1177/0361198119843858

Gillis, D., Petri, M., Pratelli, A., Semanjski, I., y Semanjski, S. (2021). Urban Air Mobility: A State of Art Analysis. Computational Science and Its Applications – 21st International Conference, September 13–16, 2021, Cagliari (Italy).

Gouveia, M., Dias, V., y Silva, J. (2022). Management of urban air mobility for sustainable and smart cities: Vertiport networks using a user-centred design. Journal of Airline and Airport Management, 12(1), 15-28. DOI: 10.3926/jairm.207

Goyal, R., Reiche, C., Fernando, C., y Cohen, A. (2021). Advanced air mobility: Demand analysis and market potential of the airport shuttle and air taxi markets. Sustainability, 13, 7421. DOI: 10.3390/su13137421

Graydon, M., Neogi, N., y Wasson, K. (2020). Guidance for Designing Safety into Urban Air Mobility: Hazard Analysis Techniques. Working Paper, NASA Langley Research Center. https://acortar.link/XgSPnp

Grunwald, A. (2007). Converging technologies: Visions, increased contingencies of the conditio humana, and search for orientation. Futures, 39(4), 380-392. DOI: https://doi.org/10.1016/j.futures.2006.08.001

Guo, J., Chen, L., Li, L., Na, X., Vlacic, L., y Wang, F. (2024). Advanced Air Mobility: An Innovation for Future Diversified Transportation and Society. IEEE Transactions on Intelligent Vehicles. DOI: 10.1109/TIV.2024.3377464

Hansen, K. (2021). Transit Oriented Development, Gentrification and Displacement: Key Questions, Anti-Displacement Policies, and Case Studies. Minneapolis–Saint Paul: Metro Transit.

Hecken, T., Cumnuantip, S., y Klimmek, T. (2022). Structural Design of Heavy-Lift Unmanned Cargo Drones in Low Altitudes. En: Dauer, J.C. (Ed.) Automated Low-Altitude Air Delivery. Research Topics in Aerospace. Cham: Springer.

Hoffmann, R., Silva, F., y Nishimura, H. (2024). Evaluating the Eco-Efficiency of Urban Air Mobility: Understanding Environmental and Social Impacts for Informed Passenger Choices. 34th Annual INCOSE International Symposium. DOI: https://doi.org/10.1002/iis2.13189

Jiang, X. (2024). Simulating Integration of Urban Air Mobility into Existing Transportation Systems: Survey. Journal of Air Transportation, 32(3). DOI: https://doi.org/10.2514/1.D0431

Joby Aviation (2022). Joby Confirms Revolutionary Low Noise Footprint Following NASA Testing. Santa Cruz (CA): Joby Aviation. https://acortar.link/p2UQqj

Johnson, W. y Silva, C. (2022). NASA concept vehicles and the engineering of advanced air mobility aircraft. The Aeronautical Journal, 126, 59-91. DOI: 10.1017/aer.2021.92

Kasliwal, A., Furbush, N., y Gawron, J. (2019). Role of flying cars in sustainable mobility. Nature Communications, 10, 1555. DOI: 10.1038/s41467-019-09426-0

Kitchenham, B., y Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. Technical Report. Keele University and University of Durham. https://acortar.link/ZMnVtC

Konert, A., y Kasprzyk, P. (2024). Very Low-Level Flight Rules for Manned and Unmanned Aircraft Operations. Journal of Intelligent & Robotic Systems, 110(82). DOI: https://doi.org/10.1007/s10846-024-02084-5

Krylova, M. (2022). Urban planning requirements for the new air mobility (UAM) infrastructure integration. Master Thesis, Frankfurt University of Applied Sciences, Germany.

Lim, E., y Hwang, H. (2019). The selection of vertiport location for on-demand mobility and its application to Seoul metro area. International Journal of Aeronautical and Space Sciences. DOI: 10.1007/s42405-018-0117-0

Lindsay, N., Arif, A., Sun, L., y Wang, F. (2024). Emission and Energy Aware Operation of Electric Aircraft for Advanced Air Mobility. AIAA Aviation Forum and Ascend 2024. DOI: https://doi.org/10.2514/6.2024-3940

Ljungholm, D. (2019). Regulating Government and Private Use of Unmanned Aerial Vehicles: Drone Policymaking, Law Enforcement Deployment, and Privacy Concerns. Analysis and Metaphysics. https://acortar.link/ADUWWr

Long, Q., Ma, J., Jiang, F., y Webster, C. (2023). Demand analysis in urban air mobility: A literature review. Journal of Air Transport Management, 112, 102436, DOI: 10.1016/j.jairtraman.2023.102436

Mineta (2014). Measuring Benefits of Transit Oriented Development. New Jersey: Mineta National Transit Research Consortium.

Mostofi, H., Biehle, T., y Dienel, H. (2024). Modelling public attitude towards air taxis in Germany. Transportation Research Interdisciplinary Perspectives, 24, 101045. DOI: https://doi.org/10.1016/j.trip.2024.101045

NASA (2020). eVTOL Passenger Acceptance. Technical Report. Washington DC: National Aeronautics and Space Administration. https://acortar.link/G5zhU2

NASA (2018). Urban Air Mobility Market Study. Washington DC: NASA. https://ntrs.nasa.gov/citations/20190000519

Perperidou, D., y Kirgiafinis, D. (2022). Urban Air Mobility (UAM) Integration to Urban Planning. 6th Conference on Sustainable Urban Mobility, August 31–September 2, 2022, Skiathos Island (Greece).

Petersen, K., Vakkalanka, S., y Kuzniarz, L. (2015). Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology, 64, 1–18. DOI: 10.1016/j.infsof.2015.03.007

Petersen, K., Feldt, R., Mujtaba, S., y Mattsson, M. (2008). Systematic mapping studies in software engineering. 12th International Conference on Evaluation and Assessment in Software Engineering. DOI: 10.14236/ewic/EASE2008.8

Polaczyk, N., Trombino, E., Wei, P., y Mitici, M. (2019). A review of current technology and research in urban on-demand air mobility applications. 8th Biennial Autonomous VTOL Technical Meeting and 6th Annual Electric VTOL Symposium, Jan. 28-Feb. 1, 2019, Mesa (USA).

Pons-Prats, J., Zivojinovic, T., y Kuljanin, J. (2022). On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm. Transportation Research Part E, 166, 102868. DOI: 10.1016/j.tre.2022.102868

Porsche Consulting (2021). The economics of vertical mobility. Stuttgart: Porsche Consulting.

Porter, A., Roessner, J., Jin, X., y Newman, N. (2002). Measuring national emerging technology capabilities. Science and Public Policy, 29(3), 189–200. DOI: https://doi.org/10.3152/147154302781781001

Preis, L. (2021). Quick Sizing, Throughput Estimating and Layout Planning for VTOL Aerodromes – A Methodology for Vertiport Design. AIAA Aviation Forum, August 2-6, 2021. DOI: 10.2514/6.2021-2372

PwC (2023). Advanced Air Mobility. London: PricewaterhouseCoopers.

PwC (2022). Skies without Limits. London: PricewaterhouseCoopers.

RGPD (2016). Reglamento General de Protección de Datos de la Unión Europea (Reglamento 2016/679). Diario Oficial de la Unión Europea. https://acortar.link/DQ8Rn2

Rice, S., Tamilselvan, G., Winter, S., Milner, M., Anania, E., Sperlak, L., y Marte, D. (2018). Public Perception of UAS Privacy Concerns: A Gender Comparison. Journal of Unmanned Vehicle Systems, 6(2). DOI: https://doi.org/10.1139/juvs-2017-0011

Roland Berger (2020). Urban Air Mobility. New York: Roland Berger.

Rotolo, D., Hicks, D., y Martin, B. (2015). What is an emerging technology? Research Policy. DOI: https://doi.org/10.1016/j.respol.2015.06.006

Shaheen, S., Cohen, A., y Farrar, E. (2018). The Potential Societal Barriers of Urban Air Mobility. Technical Report. Transportation Sustainability Research Center, University of California (Berkeley). DOI: 10.7922/G28C9TFR

Small, H., Boyack, K., y Klavans, R. (2014). Identifying emerging topics in science and technology. Research Policy, 48(8), 1450–1467. DOI: https://doi.org/10.1016/j.respol.2014.02.005

Stelkens-Kobsch, T., y Predescu, A. (2022). Contribution to a secure urban air mobility. IEEE/AIAA 41st Digital Avionics Systems Conference. DOI: 10.1109/DASC55683.2022.9925845

Straubinger, A., Michelmann, J., y Biehle, T. (2021). Business model options for passenger urban air mobility. CEAS Aeronautical Journal, 12, 361–380. DOI: 10.1007/s13272-021-00514-w

Straubinger, A., Rothfeld, R., Shamiyeh, M., Büchter, K., Kaiser, J., y Plötner, K. (2020). An overview of current research and developments in urban air mobility–setting the scene for UAM introduction. Journal of Air Transport Management, 87, 101852. DOI: 10.1016/j.jairtraman.2020.101852

Tang, A. (2021). A Review on Cybersecurity Vulnerabilities for Urban Air Mobility. AIAA Scitech 2021 Forum. DOI: 10.2514/6.2021-0773

Tepylo, N., Straubinger, A., y Laliberte, J. (2023). Public perception of advanced aviation technologies: A review and roadmap to acceptance. Progress in Aerospace Sciences. DOI: https://doi.org/10.1016/j.paerosci.2023.100899

Thipphavong, D. (2018). Urban Air Mobility Airspace Integration Concepts and Considerations. Aviation Technology, Integration, and Operations Conference, June 25-29, 2018, Atlanta (Georgia), USA.

Thomas, K., y Granberg, T. (2023). Quantifying Visual Pollution from Urban Air Mobility. Drones, 7, 396. DOI: 10.3390/drones7060396

Torens, C. (2021). HorizonUAM: Safety and Security Considerations for Urban Air Mobility. AIAA Aviation Forum. DOI: https://doi.org/10.2514/6.2021-3199

Uber Elevate (2016). Fast-forwarding to a future of on-demand urban air transportation. https://acortar.link/uFcwSq

van Engelen, E. (2020). Emerging Technologies. New York: Business Expert Press.

Venkatesh, V., y Davis, F. (2000). Theoretical extension of the technology acceptance model: four longitudinal field studies. Management Science, 46(2), 186–204. DOI: ttps://doi.org/10.1287/mnsc.46.2.186.11926

Venkatesh, V., Morris, M., Davis, G., y Davis, F. (2003). User acceptance of information technology: toward a unified view. MIS Quarterly, 27(3), 425–478. DOI: https://doi.org/10.2307/30036540

Wang, K., Jacquillat. A., y Vaze, V. (2022). Vertiport Planning for Urban Aerial Mobility: An Adaptive Discretization Approach. Manufacturing & Service Operations Management. DOI: https://doi.org/10.1287/msom.2022.1148

Wang, Y., Xia, H., Yao, Y., y Huang, Y. (2016). Flying Eyes and Hidden Controllers: Qualitative Study of People’s Privacy Perceptions of Civilian Drones in the US. Proceedings on Privacy Enhancing Technologies. DOI: https://doi.org/10.1515/popets-2016-0022

WEF (2020). Principles of the Urban Sky. World Economic Forum (WEF). https://acortar.link/nZDirN

Winkler, S., Zeadally, S., y Evans, K. (2018). Privacy and Civilian Drone Use: The Need for Further Regulation. IEEE Security & Privacy, 16, 72–80. DOI: 10.1109/MSP.2018.3761721

Winter, S., Rice, S., Tamilselvan, G., y Tokarski, R. (2016). Mission-Based Citizen Views on UAV Usage and Privacy: An Affective Perspective. Journal of Unmanned Vehicle Systems, 4(2). DOI: https://doi.org/10.1139/juvs-2015-0031

Yedavalli, P. y Cohen, A. (2022). Planning Land Use Constrained Networks of Urban Air Mobility Infrastructure in the San Francisco Bay Area. Transportation Research Record, 2676(7), 106-116. DOI: 10.1177/03611981221076839

Yedavalli, P., y Mooberry, J. (2019). An Assessment of Public Perception of Urban Air Mobility (UAM). Working Paper, AIRBUS. https://acortar.link/JgBXSV

Zhao, Y. y Feng, T. (2024). Strategic integration of vertiport planning in multimodal transportation for urban air mobility: A case study in Beijing, China. Journal of Cleaner Production, 467, 142988. DOI: 10.1016/j.jclepro.2024.142988

Zielinski, T. (2022). Challenges for Employing Drones in the Urban Transport Systems. Safety & Defense, 8(2), 1-8. DOI: 10.37105/sd.179

Downloads

Published

18/06/2025

How to Cite

Díaz Olariaga, O. (2025). Analysis of the social acceptance of emerging technology. The case of Urban Air Mobility. Sociología Y Tecnociencia, 15(2), 1–24. https://doi.org/10.24197/st.2.2025.1-24

Issue

Section

Articles