Efecto de la representación de la información en el nivel de alfabetización estadística de alumnos de Bachillerato en noticias falseadas

Autores/as

  • David Molina Muñoz Departamento de Didáctica de la Matemática, Universidad de Granada , Departamento de Didáctica de la Matemática, Universidad de Granada https://orcid.org/0000-0002-7139-9173
  • Ana Alcalá-Navarrete , Departamento de Didáctica de la Matemática, Universidad de Granada
  • José Miguel Contreras García , Departamento de Didáctica de la Matemática, Universidad de Granada https://orcid.org/0000-0001-6821-0563
  • Elena Molina Portillo , Departamento de Didáctica de la Matemática, Universidad de Granada

DOI:

https://doi.org/10.24197/st.2.2022.165-185

Palabras clave:

alfabetización estadística, Bachillerato, noticias falseadas, representación, información

Resumen

En la actualidad, el impacto de las noticias falseadas ha aumentado de forma exponencial debido, en parte, a la facilidad con que pueden difundirse por medio de las redes sociales. Esto convierte a los jóvenes, usuarios mayoritarios de las redes sociales, en el grupo más expuesto a este tipo de noticias, las cuales suelen incluir información numérica representada de distintas formas. En este trabajo se pretende estudiar el efecto de la representación (frecuencia, gráfica, porcentaje o probabilidad) en que se presenta una determinada información sesgada en el nivel de alfabetización estadística de estudiantes de Bachillerato. Los resultados muestran un bajo nivel de alfabetización estadística de los estudiantes independientemente de la forma en que venga dada la información, con una ligera mejoría en el caso en que la información se presente en forma de frecuencia.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Allcott, H. y Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic Perspectives, 31(2), 211–236. https://doi.org/10.1257/jep.31.2.211

Alsina, Á., Vásquez, C. A., Muñiz-Rodríguez, L. y Rodríguez Muñiz, L. (2020). ¿Cómo promover la alfabetización estadística y de datos en contexto? Estrategias y recursos a partir de la COVID-19 para Educación Secundaria. Épsilon - Revista de Educación Matemática, 104, 99–128.

Álvarez Alfonso, I., Guerrero Gutiérrez, Y. A. y López, Y. D. T. (2020). Taxonomía de errores y dificultades en la construcción e interpretación de tablas de frecuencia. Zetetike, 28, 1–22. https://doi.org/10.20396/zet.v28i0.8656553

Añaños, E. y Astals, A. (2013). ¿Imagen o texto? El poder de captar la atención visual de los elementos gráficos analizado con el Eye tracker. Grafica, 1(2), 87–98.

Bassan Cincinatus, R. y Sheffet, M. (2016). “With percentages the 100 is always in the denominator”: From the field to pre-service teachers. International Journal of Research in Education and Science, 2(1), 143–155. https://doi.org/10.21890/ijres.75271

Bauman, Z. (2005). Modernity and ambivalence. Polity Press.

Biehler, R., Frischemeier, D., Reading, C. y Shaughnessy, J. M. (2018). Reasoning About Data. In International Handbook of Research in Statistics Education (pp. 139–192). Springer, Cham. https://doi.org/10.1007/978-3-319-66195-7_5

Bulger, M. y Davison, P. (2018). The Promises, Challenges, and Futures of Media Literacy. Journal of Media Literacy Education, 10(1), 1–21. https://doi.org/10.23860/jmle-2018-10-1-1

Cairo, A. (2015). Graphics lies, misleading visuals: Reflections on the challenges and pitfalls of evidence-driven visual communication. In New Challenges for Data Design (pp. 103–116). Springer, London. https://doi.org/10.1007/978-1-4471-6596-5_5

Chick, H. L. y Pierce, R. (2012). Teaching for statistical literacy: utilising affordances in real-word data. International Journal of Science and Mathematics Education, 10(2), 339–362. https://doi.org/10.1007/S10763-011-9303-2

Comisión Europea (2018). Fake news and disinformation online. Recuperado de https://europa.eu/eurobarometer/api/deliverable/download/file?deliverableId=65673

Contreras, J. M., Molina-Portillo, E., Godino, J. D. y Batanero, C. (2017). Construcción de un cuestionario para evaluar la interpretación crítica de gráficos estadísticos por futuros profesores. In J. M. Muñoz, A. Arnal-Bailera, P. Beltrán-Pellicer, M. L. Callejoy J. Carrillo (Eds.), Investigación en Educación Matemática XXI (pp. 207–216).

Engel, J. (2017). Statistical literacy for active citizenship: A call for data science education. Statistics Education Research Journal, 16(1), 44–49.

Fernández-García, N. (2017). Fake news: una oportunidad para la alfabetización mediática. Nueva Sociedad, 269, 66–77.

Gal, Iddo. (2002). Adults’ statistical literacy: Meanings, components, responsibilities. International Statistical Review, 70(1), 1–25. https://doi.org/10.1111/j.1751-5823.2002.tb00336.x

Gal, Iddo. (2019). Understanding statistical literacy: About knowledge of contexts and models Comprensión de la cultura estadística (alfabetización estadística): Sobre el conocimiento de contextos y modelos. In J. M. Contreras, M. M. Gea, M. M. López-Martíny E. Molina-Portillo (Eds.), Actas del Tercer Congreso Internacional Virtual de Educación Estadística.

Gea, M. M., Arteaga, P. y Cañadas, G. R. (2017). Interpretación de gráficos estadísticos por futuros profesores de Educación Secundaria. Avances de Investigación en Educación Matemática, 12, 19–37. https://doi.org/10.35763/aiem.v1i12.189

Gigerenzer, G. y Edwards, A. (2003). Simple tools for understanding risks: from innumeracy to insight. BMJ, 327, 741–744. https://doi.org/10.1136/BMJ.327.7417.741

Gottfried, J. y Shearer, E. (2017). Americans’ Online News Use is Closing in on TV News Use. Pew Research Center. http://www.pewresearch.org/fact-tank/2017/09/07/americans-online-news-use-vs-tv-news-use/.

Gutiérrez-Coba, L. M., Coba-Gutiérrez, P. y Gómez-Díaz, J. A. (2020). Noticias falsas y desinformación sobre el Covid-19: análisis comparativo de seis países iberoamericanos. Revista Latina de Comunicacion Social, 78, 237–264. https://doi.org/10.4185/RLCS-2020-1476

Hofstadter, D. (2008). Metamagical themas: Questing for the essence of mind and pattern. Basic Books.

Kahne, J. y Bowyer, B. (2017). Educating for Democracy in a Partisan Age: Confronting the Challenges of Motivated Reasoning and Misinformation. American Educational Research Journal, 54(1), 3–34. https://doi.org/10.3102/0002831216679817

Knapp, T. R. (2009). Percentages: The most useful statistics ever invented.

Meerman Scott, D. (2015). An image is worth a thousand words. In The new rules of marketing and PR: how to use social media, online video, mobile applications, blogs, news releases, and viral marketing to reach buyers directly (pp. 310 – 323). John Wiley y Sons, Inc.

Mehta, R. y Guzmán, L. (2018). Fake or visual trickery? Understanding the quantitative visual rethoric in the news. Journal of Media Literacy Education, 10(2), 104–122.

Nicholson, J., Gal, I. y Ridgway, J. (2018). Understanding Civic Statistics: A Conceptual Framework and its Educational Applications. A product of the ProCivicStat Project. Available from: http://IASE-web.org/islp/pcs

Pérez Tornero, J. M. (2008). Media Literacy. New Conceptualisation, New Approach. In Empowerment through Media Education and Intercultural Dialogue (1st ed., pp. 103–116). https://doi.org/https://ddd.uab.cat/record/220411

Poljičak Sušec, M., Jerak Muravec, N. y Stančić, H. (2014). Statistical literacy as an aspect of media literacy. Medijska Istraživanja: Znanstveno-Stručni Časopis Za Novinarstvo i Medije, 20(2), 131–155.

Prasad, G. V. R. J. S. y Ojha, A. (2012). Text, table and graph - Which is faster and more accurate to understand? 2012 IEEE 4th International Conference on Technology for Education, T4E 2012, 126–131. https://doi.org/10.1109/T4E.2012.18

Rodríguez-Muñiz, L. J., Muñiz-Rodríguez, L., Vásquez, C. y Alsina, Á. (2020). ¿Cómo promover la alfabetización estadística y de datos en contexto? Estrategias y recursos a partir de la COVID-19 para Educación Secundaria. Números - Revista de Didáctica de las matemáticas, 104, 217-238.

Rodríguez Pérez, C. (2019). No diga fake news, di desinformación: una revisión sobre el fenómeno de las noticias falsas y sus implicaciones. Comunicación, 40, 65–74. https://doi.org/10.18566/comunica.n40.a05

Rumsey, D. J. (2002). Statistical literacy as a goal for introductory statistics courses. Journal of Statistics Education, 10(3). https://doi.org/10.1080/10691898.2002.11910678

Scheufele, D. A. y Krause, N. M. (2019). Science audiences, misinformation, and fake news. Proceedings of the National Academy of Sciences of the United States of America, 116(16), 7662–7669. https://doi.org/10.1073/pnas.1805871115

Sinayev, A., Peters, E., Tusler, M. y Fraenkel, L. (2015). Presenting Numeric Information with Percentages and Descriptive Risk Labels:A Randomized Trial. Medical Decision Making, 35(8), 937–947. https://doi.org/10.1177/0272989X15584922

Watson, J. y Callingham, R. (2003). Statistical literacy: A complex hierarchical construct. Statistics Education Research Journal, 2(2), 3–46.

Watson, J. (1997). Assessing statistical literacy using the media. In I. Gal y J. B. Garfield (Eds.), The Assessment Challenge in Statistics Education (pp. 107–121). IOS Press and The International Statistical Institute. https://doi.org/10.2307/2685944

Descargas

Publicado

2022-09-11

Cómo citar

Efecto de la representación de la información en el nivel de alfabetización estadística de alumnos de Bachillerato en noticias falseadas. (2022). Sociología Y Tecnociencia, 12(2), 165-185. https://doi.org/10.24197/st.2.2022.165-185