La tormenta de Citoquinas en la enfermedad COVID-19 de pacientes críticos.

Autores/as

  • Elena Bustamante Munguira HOSPITAL CLÍNICO UNIVERSITARIO DE VALLADOLID AVDA/ RAMON Y CAJAL, 3-47003- VALLADOLID
  • Mariano Sánchez Crespo IBGM (INSTITUTO DE GENÉTICA Y BIOLOGÍA MOLECULAR) C/ SANZ Y FORES, 3-47003-VALLADOLID
  • Maria Bustamante Munguira HOSPITAL CLINICO UNIVERSITARIO DE VALLADOLID AVDA/ RAMON Y CAJAL, 3-47003-VALLADOLID

DOI:

https://doi.org/10.24197/pky00829

Resumen

La pandemia por SARS_CoV-2 es un problema sanitario a nivel mundial. El virus cursa con cuadros clínicos variables, desde pacientes asintomáticos hasta neumonía con distrés respiratorio del adulto y fallo multiorgánico.

Este estudio pretende analizar mediante mecanismos moleculares, si los factores de transcripción activados durante la respuesta a proteínas mal plegadas, SXBP1, mantienen la transcripción de genes que codifican las citoquinas que intervienen en la hiperimflamación asociada a la tormenta de citoquinas.

Estudiamos en muestras nasofaríngeas y aspirados bronquiales de pacientes con (60) y sin (59) Covid-19 ingresados en una unidad de críticos, la presencia o ausencia de infección activa y sXBP1.

El SARS-Cov-2 presenta mecanismos patogénicos, así como manejo diagnóstico y terapéutico no  conocido, pretendemos estudiar la implicación de TLR 7/8 y SxBP 1  en la sepsis viral  perfilar el paisaje transcripcional y controlar la cascada inflamatoria, identificando un factor patogénico proporcionando un biomarcador pronóstico temprano.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

1.Consultado https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov-China /documentos/Protocolo_manejo_clinico_uci_COVID-19.pdf. Accedido el: 15 de abril de 2020.

2. Wu C et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. (2020); doi:10.1001/jamainternmed.2020.0994.

3. Hetz C, Zhang K, Kaufman RJ. Mechanisms, Regulation and Functions of the Unfolded Protein Response. Nat Rev Mol Cell Biol (2020) 21(8):421-38. doi: 10.1038/s41580-020-0250-z

4. Bettigole SE, Glimcher LH. Endoplasmic Reticulum Stress in Immunity. Annu Rev Immunol (2015) 33:107-38. doi: 10.1146/annurev-immunol-032414-112116

5. Chen X,Cubillos-Ruiz JR. Endoplasmic Reticulum Stress Signals in The tumour and its Microenvironment. Nat Rev Cancer (2021) 21(2):71-88. doi: 10.1038/s41568-020-00312-2

6. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature (2002) 415(6867):92-6. doi: 10.1038/415092a.

7. Chopra S, Giovanelli P, Alvarado-Vazquez PA, Alonso S, Song M, Sandoval TA, et al. 2019. IRE1α-XBP1 Signaling in Leukocytes Controls Prostaglandin Biosynthesis and Pain. Science (2019) 365(6450):eaau6499. doi: 10.1126/science.aau6499

8. Martinon F, Chen X, Lee AH, Glimcher LH. 2011. TLR Activation of the Transcription Factor XBP1 Regulates Innate Immune Responses in Macrophages. Nat Immunol (2011) 11(5):411-18. doi: 10.1038/ni.1857

9. Zeng L, Liu YP, Sha H, Chen H, Qi L, Smith JA. 2010. XBP-1 Couples Endoplasmic Reticulum Stress to Augmented IFN-β Induction via a cis-Acting Enhancer in Macrophages. J Immunol (2010) 185(4):2324-30. doi: 10.4049/jimmunol.0903052

10. Márquez S, Fernández JJ, Terán-Cabanillas E, Herrero C, Alonso S, Azogil A, et al . Endoplasmic Reticulum Stress Sensor IRE1α Enhances IL-23 Expression by Human Dendritic Cells. Front Immunol (2017) 8:639. doi: 10.3389/fimmu.2017.00639

11. Mogilenko DA, Haas JT, L'homme L, Fleur S, Quemener S, Levavasseur C, et al. Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell (2019) 177(5):1201-16. doi: 10.1016/j.cell.2019.03.018

12. Keestra-Gounder AM, Byndloss MX, Seyffert N, Young BM, Chávez-Arroyo A, Tsai AY, et al. NOD1 and NOD2 Signalling Links ER Stress with Inflammation. Nature (2016) 532(7599):394-7. doi: 10.1038/nature17631

13. Qiu Q, Zheng Z, Chang L, Zhao YS, Tan C, Dandekar A, et al. Toll-like Receptor-Mediated IRE1α Activation as a Therapeutic Target for Inflammatory Arthritis. EMBO J (2013) 32(18):2477-90. doi: 10.1038/emboj.2013.183

14. Rosen DA, Seki SN, Fernández-Castañeda A, Beiter RM, Eccles JD , Woodfolk JA, et al. Modulation of the Sigma-1 Receptor-IRE1 Pathway is Beneficial in Preclinical Models of Inflammation and Sepsis. Sci Transl Med (2019) 11(478):eaau5266. doi: 10.1126/scitranslmed.aau5266

15. Sule G, Abuaita BH, Steffes PA, Fernandes AT, Estes SK, Dobry C, et al. Endoplasmic Reticulum Stress Sensor IRE1α Propels Neutrophil Hyperactivity in Lupus. J Clin Invest (2021) 31(7):e137866. doi: 10.1172/JCI137866

16. Prasad V, Suomalainen M, Jasiqi Y, Hemmi S, Hearing P, Hosie L, et al. 2020. The UPR Sensor IRE1α and the Adenovirus E3-19K Glycoprotein Sustain Persistent and Lytic Infections. Nat Commun (2011) 11(1):1997. doi: 10.1038/s41467-020-15844-2

17. Prasad V, Greber UF. 2021. The Endoplasmic Reticulum Unfolded Protein Response - Homeostasis, Cell Death and Evolution in Virus Infections. FEMS Microbiol Rev (2021) 45(5):fuab016. doi: 10.1093/femsre/fuab016

18. Hrincius ER, Liedmann S, Finkelstein D, Vogel P, Gansebom S, Samarasinghe AE, et al. Acute Lung Injury Results from Innate Sensing of Viruses by an ER Stress Pathway. Cell Rep (2015) 11(10):1591-603. doi: 10.1016/j.celrep.2015.05.012

19. Liu N, Jiang C, Cai P, Shen Z, Sun W, Xu HM, et al. Single-Cell Analysis of COVID-19, Sepsis, and HIV Infection Reveals Hyperinflammatory and Immunosuppressive Signatures in Monocytes. Cell Rep (2021) 37(1):109793. doi: 10.1016/j.celrep.2021.109793

20. Ren X, Wen W, Fan X, Hou W, Su B, Cai P, et al. 2021. COVID-19 Immune Features Revealed by a Large-Scale Single-Cell Transcriptome Atlas. Cell (2021) 184(7):1895-1913.e19. doi: 10.1016/j.cell.2021.01.053

21. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell (2020) 181(5):1036-45.e9. doi: 10.1016/j.cell.2020.04.026

22. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective Treatment of Severe COVID-19 Patients with Tocilizumab. Proc Natl Acad Sci USA (2020) 117(20):10970-5. doi: 10.1073/pnas.2005615117

23. Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, et al. XBP1 Controls Diverse Cell-Type and Condition-Specific Transcriptional Regulatory Networks. Mol Cell (2007) 27(1):53-66. doi: 10.1016/j.molcel.2007.06.011

24. van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, Kersten S, et al. Presence of Genetic Variants among Young Men with Severe COVID-19. JAMA (2020) 324(7):663-73. doi: 10.1001/jama.2020.13719

25. Zhou Z, Ren L, Zhang L, Zhong J, Xiao Y, Jia Z, et al. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell Host Microbe (2020) 27(6):883-90. doi: 10.1016/j.chom.2020.04.017

26. Shi S, Blumenthal A, Hickey CM, Gandotra S, Levy D, Ehrt S. Expression of Many Immunologically Important Genes in Mycobacterium tuberculosis-Infected Macrophages Is Independent of both TLR2 and TLR4 but Dependent on IFN-αβ Receptor and STAT1. J Immunol (2005) 175(5):3318-28. doi: 10.4049/jimmunol.175.5.3318

27. Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, et al. Immune-Responsive Gene 1 Protein Links Metabolism to Immunity by Catalyzing Itaconic Acid Production. Proc Natl Acad Sci USA (2013) 110(19):7820-5. doi: 10.1073/pnas.1218599110

28. Fallerini C, Daga S, Mantovani S, Benetti E, Picchiotti N, Francisci D, et al. Association of Toll-like Receptor 7 Variants with Life-Threatening COVID-19 Disease in Males: Findings from a Nested Case-Control Study. Elife (2021)10:e67569. doi: 10.7554/eLife.67569.

29. Ito T, Amakawa R, Kaisho T, Hemmi H, Tajima K, Uehira K, et al. Interferon-α and Interleukin-12 Are Induced Differentially by Toll-like Receptor 7 Ligands in Human Blood Dendritic Cell Subsets. J Exp Med (2002)195(11):1507-12. doi: 10.10:1507-12. doi: 10.1084/jem.20020207 .

Descargas

Publicado

2025-12-10

Número

Sección

Artículos

Cómo citar

La tormenta de Citoquinas en la enfermedad COVID-19 de pacientes críticos. (2025). Anales De La Real Academia De Medicina Y Cirugía De Valladolid, 58, 71-87. https://doi.org/10.24197/pky00829