The cytokine storm in critically ill COVID-19 patients.

Authors

  • Elena Bustamante Munguira HOSPITAL CLÍNICO UNIVERSITARIO DE VALLADOLID AVDA/ RAMON Y CAJAL, 3-47003- VALLADOLID
  • Mariano Sánchez Crespo IBGM (INSTITUTO DE GENÉTICA Y BIOLOGÍA MOLECULAR) C/ SANZ Y FORES, 3-47003-VALLADOLID
  • María Bustamante Munguira HOSPITAL CLINICO UNIVERSITARIO DE VALLADOLID AVDA/ RAMON Y CAJAL, 3-47003-VALLADOLID

DOI:

https://doi.org/10.24197/pky00829

Abstract

The SARS-CoV-2 pandemic is a global health problem. The virus manifests with variable clinical outcomes, ranging from asymptomatic patients to pneumonia with adult respiratory distress and multi-organ failure. This study aims to analyze, through molecular mechanisms, whether the transcription factors activated during the response to misfolded proteins, SXBP1, maintain the transcription of genes encoding cytokines involved in the hyperinflammation associated with the cytokine storm. We studied, in nasopharyngeal samples and bronchial aspirates from patients

Downloads

Download data is not yet available.

References

1.Consultado https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov-China /documentos/Protocolo_manejo_clinico_uci_COVID-19.pdf. Accedido el: 15 de abril de 2020.

2. Wu C et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. (2020); doi:10.1001/jamainternmed.2020.0994.

3. Hetz C, Zhang K, Kaufman RJ. Mechanisms, Regulation and Functions of the Unfolded Protein Response. Nat Rev Mol Cell Biol (2020) 21(8):421-38. doi: 10.1038/s41580-020-0250-z

4. Bettigole SE, Glimcher LH. Endoplasmic Reticulum Stress in Immunity. Annu Rev Immunol (2015) 33:107-38. doi: 10.1146/annurev-immunol-032414-112116

5. Chen X,Cubillos-Ruiz JR. Endoplasmic Reticulum Stress Signals in The tumour and its Microenvironment. Nat Rev Cancer (2021) 21(2):71-88. doi: 10.1038/s41568-020-00312-2

6. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature (2002) 415(6867):92-6. doi: 10.1038/415092a.

7. Chopra S, Giovanelli P, Alvarado-Vazquez PA, Alonso S, Song M, Sandoval TA, et al. 2019. IRE1α-XBP1 Signaling in Leukocytes Controls Prostaglandin Biosynthesis and Pain. Science (2019) 365(6450):eaau6499. doi: 10.1126/science.aau6499

8. Martinon F, Chen X, Lee AH, Glimcher LH. 2011. TLR Activation of the Transcription Factor XBP1 Regulates Innate Immune Responses in Macrophages. Nat Immunol (2011) 11(5):411-18. doi: 10.1038/ni.1857

9. Zeng L, Liu YP, Sha H, Chen H, Qi L, Smith JA. 2010. XBP-1 Couples Endoplasmic Reticulum Stress to Augmented IFN-β Induction via a cis-Acting Enhancer in Macrophages. J Immunol (2010) 185(4):2324-30. doi: 10.4049/jimmunol.0903052

10. Márquez S, Fernández JJ, Terán-Cabanillas E, Herrero C, Alonso S, Azogil A, et al . Endoplasmic Reticulum Stress Sensor IRE1α Enhances IL-23 Expression by Human Dendritic Cells. Front Immunol (2017) 8:639. doi: 10.3389/fimmu.2017.00639

11. Mogilenko DA, Haas JT, L'homme L, Fleur S, Quemener S, Levavasseur C, et al. Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell (2019) 177(5):1201-16. doi: 10.1016/j.cell.2019.03.018

12. Keestra-Gounder AM, Byndloss MX, Seyffert N, Young BM, Chávez-Arroyo A, Tsai AY, et al. NOD1 and NOD2 Signalling Links ER Stress with Inflammation. Nature (2016) 532(7599):394-7. doi: 10.1038/nature17631

13. Qiu Q, Zheng Z, Chang L, Zhao YS, Tan C, Dandekar A, et al. Toll-like Receptor-Mediated IRE1α Activation as a Therapeutic Target for Inflammatory Arthritis. EMBO J (2013) 32(18):2477-90. doi: 10.1038/emboj.2013.183

14. Rosen DA, Seki SN, Fernández-Castañeda A, Beiter RM, Eccles JD , Woodfolk JA, et al. Modulation of the Sigma-1 Receptor-IRE1 Pathway is Beneficial in Preclinical Models of Inflammation and Sepsis. Sci Transl Med (2019) 11(478):eaau5266. doi: 10.1126/scitranslmed.aau5266

15. Sule G, Abuaita BH, Steffes PA, Fernandes AT, Estes SK, Dobry C, et al. Endoplasmic Reticulum Stress Sensor IRE1α Propels Neutrophil Hyperactivity in Lupus. J Clin Invest (2021) 31(7):e137866. doi: 10.1172/JCI137866

16. Prasad V, Suomalainen M, Jasiqi Y, Hemmi S, Hearing P, Hosie L, et al. 2020. The UPR Sensor IRE1α and the Adenovirus E3-19K Glycoprotein Sustain Persistent and Lytic Infections. Nat Commun (2011) 11(1):1997. doi: 10.1038/s41467-020-15844-2

17. Prasad V, Greber UF. 2021. The Endoplasmic Reticulum Unfolded Protein Response - Homeostasis, Cell Death and Evolution in Virus Infections. FEMS Microbiol Rev (2021) 45(5):fuab016. doi: 10.1093/femsre/fuab016

18. Hrincius ER, Liedmann S, Finkelstein D, Vogel P, Gansebom S, Samarasinghe AE, et al. Acute Lung Injury Results from Innate Sensing of Viruses by an ER Stress Pathway. Cell Rep (2015) 11(10):1591-603. doi: 10.1016/j.celrep.2015.05.012

19. Liu N, Jiang C, Cai P, Shen Z, Sun W, Xu HM, et al. Single-Cell Analysis of COVID-19, Sepsis, and HIV Infection Reveals Hyperinflammatory and Immunosuppressive Signatures in Monocytes. Cell Rep (2021) 37(1):109793. doi: 10.1016/j.celrep.2021.109793

20. Ren X, Wen W, Fan X, Hou W, Su B, Cai P, et al. 2021. COVID-19 Immune Features Revealed by a Large-Scale Single-Cell Transcriptome Atlas. Cell (2021) 184(7):1895-1913.e19. doi: 10.1016/j.cell.2021.01.053

21. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell (2020) 181(5):1036-45.e9. doi: 10.1016/j.cell.2020.04.026

22. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective Treatment of Severe COVID-19 Patients with Tocilizumab. Proc Natl Acad Sci USA (2020) 117(20):10970-5. doi: 10.1073/pnas.2005615117

23. Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, et al. XBP1 Controls Diverse Cell-Type and Condition-Specific Transcriptional Regulatory Networks. Mol Cell (2007) 27(1):53-66. doi: 10.1016/j.molcel.2007.06.011

24. van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, Kersten S, et al. Presence of Genetic Variants among Young Men with Severe COVID-19. JAMA (2020) 324(7):663-73. doi: 10.1001/jama.2020.13719

25. Zhou Z, Ren L, Zhang L, Zhong J, Xiao Y, Jia Z, et al. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell Host Microbe (2020) 27(6):883-90. doi: 10.1016/j.chom.2020.04.017

26. Shi S, Blumenthal A, Hickey CM, Gandotra S, Levy D, Ehrt S. Expression of Many Immunologically Important Genes in Mycobacterium tuberculosis-Infected Macrophages Is Independent of both TLR2 and TLR4 but Dependent on IFN-αβ Receptor and STAT1. J Immunol (2005) 175(5):3318-28. doi: 10.4049/jimmunol.175.5.3318

27. Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, et al. Immune-Responsive Gene 1 Protein Links Metabolism to Immunity by Catalyzing Itaconic Acid Production. Proc Natl Acad Sci USA (2013) 110(19):7820-5. doi: 10.1073/pnas.1218599110

28. Fallerini C, Daga S, Mantovani S, Benetti E, Picchiotti N, Francisci D, et al. Association of Toll-like Receptor 7 Variants with Life-Threatening COVID-19 Disease in Males: Findings from a Nested Case-Control Study. Elife (2021)10:e67569. doi: 10.7554/eLife.67569.

29. Ito T, Amakawa R, Kaisho T, Hemmi H, Tajima K, Uehira K, et al. Interferon-α and Interleukin-12 Are Induced Differentially by Toll-like Receptor 7 Ligands in Human Blood Dendritic Cell Subsets. J Exp Med (2002)195(11):1507-12. doi: 10.10:1507-12. doi: 10.1084/jem.20020207 .

Downloads

Published

2025-12-10

Issue

Section

Artículos

How to Cite

The cytokine storm in critically ill COVID-19 patients. (2025). Anales De La Real Academia De Medicina Y Cirugía De Valladolid, 58, 71-87. https://doi.org/10.24197/pky00829