The cytokine storm in critically ill COVID-19 patients.
DOI:
https://doi.org/10.24197/pky00829Abstract
The SARS-CoV-2 pandemic is a global health problem. The virus manifests with variable clinical outcomes, ranging from asymptomatic patients to pneumonia with adult respiratory distress and multi-organ failure. This study aims to analyze, through molecular mechanisms, whether the transcription factors activated during the response to misfolded proteins, SXBP1, maintain the transcription of genes encoding cytokines involved in the hyperinflammation associated with the cytokine storm. We studied, in nasopharyngeal samples and bronchial aspirates from patients
Downloads
References
1.Consultado https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov-China /documentos/Protocolo_manejo_clinico_uci_COVID-19.pdf. Accedido el: 15 de abril de 2020.
2. Wu C et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. (2020); doi:10.1001/jamainternmed.2020.0994.
3. Hetz C, Zhang K, Kaufman RJ. Mechanisms, Regulation and Functions of the Unfolded Protein Response. Nat Rev Mol Cell Biol (2020) 21(8):421-38. doi: 10.1038/s41580-020-0250-z
4. Bettigole SE, Glimcher LH. Endoplasmic Reticulum Stress in Immunity. Annu Rev Immunol (2015) 33:107-38. doi: 10.1146/annurev-immunol-032414-112116
5. Chen X,Cubillos-Ruiz JR. Endoplasmic Reticulum Stress Signals in The tumour and its Microenvironment. Nat Rev Cancer (2021) 21(2):71-88. doi: 10.1038/s41568-020-00312-2
6. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature (2002) 415(6867):92-6. doi: 10.1038/415092a.
7. Chopra S, Giovanelli P, Alvarado-Vazquez PA, Alonso S, Song M, Sandoval TA, et al. 2019. IRE1α-XBP1 Signaling in Leukocytes Controls Prostaglandin Biosynthesis and Pain. Science (2019) 365(6450):eaau6499. doi: 10.1126/science.aau6499
8. Martinon F, Chen X, Lee AH, Glimcher LH. 2011. TLR Activation of the Transcription Factor XBP1 Regulates Innate Immune Responses in Macrophages. Nat Immunol (2011) 11(5):411-18. doi: 10.1038/ni.1857
9. Zeng L, Liu YP, Sha H, Chen H, Qi L, Smith JA. 2010. XBP-1 Couples Endoplasmic Reticulum Stress to Augmented IFN-β Induction via a cis-Acting Enhancer in Macrophages. J Immunol (2010) 185(4):2324-30. doi: 10.4049/jimmunol.0903052
10. Márquez S, Fernández JJ, Terán-Cabanillas E, Herrero C, Alonso S, Azogil A, et al . Endoplasmic Reticulum Stress Sensor IRE1α Enhances IL-23 Expression by Human Dendritic Cells. Front Immunol (2017) 8:639. doi: 10.3389/fimmu.2017.00639
11. Mogilenko DA, Haas JT, L'homme L, Fleur S, Quemener S, Levavasseur C, et al. Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell (2019) 177(5):1201-16. doi: 10.1016/j.cell.2019.03.018
12. Keestra-Gounder AM, Byndloss MX, Seyffert N, Young BM, Chávez-Arroyo A, Tsai AY, et al. NOD1 and NOD2 Signalling Links ER Stress with Inflammation. Nature (2016) 532(7599):394-7. doi: 10.1038/nature17631
13. Qiu Q, Zheng Z, Chang L, Zhao YS, Tan C, Dandekar A, et al. Toll-like Receptor-Mediated IRE1α Activation as a Therapeutic Target for Inflammatory Arthritis. EMBO J (2013) 32(18):2477-90. doi: 10.1038/emboj.2013.183
14. Rosen DA, Seki SN, Fernández-Castañeda A, Beiter RM, Eccles JD , Woodfolk JA, et al. Modulation of the Sigma-1 Receptor-IRE1 Pathway is Beneficial in Preclinical Models of Inflammation and Sepsis. Sci Transl Med (2019) 11(478):eaau5266. doi: 10.1126/scitranslmed.aau5266
15. Sule G, Abuaita BH, Steffes PA, Fernandes AT, Estes SK, Dobry C, et al. Endoplasmic Reticulum Stress Sensor IRE1α Propels Neutrophil Hyperactivity in Lupus. J Clin Invest (2021) 31(7):e137866. doi: 10.1172/JCI137866
16. Prasad V, Suomalainen M, Jasiqi Y, Hemmi S, Hearing P, Hosie L, et al. 2020. The UPR Sensor IRE1α and the Adenovirus E3-19K Glycoprotein Sustain Persistent and Lytic Infections. Nat Commun (2011) 11(1):1997. doi: 10.1038/s41467-020-15844-2
17. Prasad V, Greber UF. 2021. The Endoplasmic Reticulum Unfolded Protein Response - Homeostasis, Cell Death and Evolution in Virus Infections. FEMS Microbiol Rev (2021) 45(5):fuab016. doi: 10.1093/femsre/fuab016
18. Hrincius ER, Liedmann S, Finkelstein D, Vogel P, Gansebom S, Samarasinghe AE, et al. Acute Lung Injury Results from Innate Sensing of Viruses by an ER Stress Pathway. Cell Rep (2015) 11(10):1591-603. doi: 10.1016/j.celrep.2015.05.012
19. Liu N, Jiang C, Cai P, Shen Z, Sun W, Xu HM, et al. Single-Cell Analysis of COVID-19, Sepsis, and HIV Infection Reveals Hyperinflammatory and Immunosuppressive Signatures in Monocytes. Cell Rep (2021) 37(1):109793. doi: 10.1016/j.celrep.2021.109793
20. Ren X, Wen W, Fan X, Hou W, Su B, Cai P, et al. 2021. COVID-19 Immune Features Revealed by a Large-Scale Single-Cell Transcriptome Atlas. Cell (2021) 184(7):1895-1913.e19. doi: 10.1016/j.cell.2021.01.053
21. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell (2020) 181(5):1036-45.e9. doi: 10.1016/j.cell.2020.04.026
22. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective Treatment of Severe COVID-19 Patients with Tocilizumab. Proc Natl Acad Sci USA (2020) 117(20):10970-5. doi: 10.1073/pnas.2005615117
23. Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, et al. XBP1 Controls Diverse Cell-Type and Condition-Specific Transcriptional Regulatory Networks. Mol Cell (2007) 27(1):53-66. doi: 10.1016/j.molcel.2007.06.011
24. van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, Kersten S, et al. Presence of Genetic Variants among Young Men with Severe COVID-19. JAMA (2020) 324(7):663-73. doi: 10.1001/jama.2020.13719
25. Zhou Z, Ren L, Zhang L, Zhong J, Xiao Y, Jia Z, et al. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell Host Microbe (2020) 27(6):883-90. doi: 10.1016/j.chom.2020.04.017
26. Shi S, Blumenthal A, Hickey CM, Gandotra S, Levy D, Ehrt S. Expression of Many Immunologically Important Genes in Mycobacterium tuberculosis-Infected Macrophages Is Independent of both TLR2 and TLR4 but Dependent on IFN-αβ Receptor and STAT1. J Immunol (2005) 175(5):3318-28. doi: 10.4049/jimmunol.175.5.3318
27. Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, et al. Immune-Responsive Gene 1 Protein Links Metabolism to Immunity by Catalyzing Itaconic Acid Production. Proc Natl Acad Sci USA (2013) 110(19):7820-5. doi: 10.1073/pnas.1218599110
28. Fallerini C, Daga S, Mantovani S, Benetti E, Picchiotti N, Francisci D, et al. Association of Toll-like Receptor 7 Variants with Life-Threatening COVID-19 Disease in Males: Findings from a Nested Case-Control Study. Elife (2021)10:e67569. doi: 10.7554/eLife.67569.
29. Ito T, Amakawa R, Kaisho T, Hemmi H, Tajima K, Uehira K, et al. Interferon-α and Interleukin-12 Are Induced Differentially by Toll-like Receptor 7 Ligands in Human Blood Dendritic Cell Subsets. J Exp Med (2002)195(11):1507-12. doi: 10.10:1507-12. doi: 10.1084/jem.20020207 .
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
The articles published at Anales de la Real Academia de Cirugía y Medicina will have a Creative Commons Attribution 4.0 International License (CC BY 4.0).
The journal allow the authors to retain publisshing rights. Authors may reprint their articles in other media without habing to request authorization, provided they indicate that the article was originally published in Anales de la Real Academia de Cirugía y Medicina.
