Big Data and the post-human literacy of future teachers

Keywords: postqualitative, technology, university, teacher education, ethics

Abstract

We demand for the future teachers an ethical, informed and reflexive formation that allows to face the challenges of the Big Data.

We argue that Big Data has an empowerment problem because of its lack of transparency, extractive collection, technological complexity and lack of control over its impact. These problems can be partially addressed through the education and training of future teachers involved in the formation of citizenship.

We propose, from a post-qualitative position, a series of ideas always provisional for learning activities to start building literacy in Data of the future teachers.

Downloads

Download data is not yet available.

Author Biography

José Miguel Correa Gorospe, Universidad del País Vasco / Euskal Herriko Unibertsitatea

 

 

References

Alter, A. (2018). Irresistible. ¿Quién nos ha convertido en yonquis tecnológicos? Barcelona: Paidos.
BBC (2017). AltSchool. Recuperado de https://bbc.in/3mdxvxQ
Ben-Porath, S., & Ben Shahar, T. H. (2017). Introduction: Big data and education: ethical and moral challenges. Theory and Research in Education, 15(3), 243–248. https://dx.doi.org/10.1177/1477878517737201
Bhargava, R. (2019). Data Literacy. In The International Encyclopedia of Media Literacy. https://doi.org/10.1002/9781118978238.ieml0049
Bhargava, R., Kadouaki, R., Bhargava, E., Castro, G., & D’Ignazio, C. (2016). Data Murals: Using the Arts to Build Data Literacy. The Journal of Community Informatics, 12(3).
Boyd, D., & Crawford, K. (2012). Critical Questions For Big Data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15(5), 662–679. https://doi.org/10.1080/1369118X.2012.678878
Bowker, G. C. (2013). Data flakes: An afterword to ‘raw data’ is an oxymoron. In L. Gitelman (Ed.), ‘Raw data’ is an oxymoron (pp. 167–171). Cambridge, MA: MIT Press.
Braidotti, R. (2015). Lo Posthumano. Barcelona: Gedisa.
Braunack-Mayer, A. J., Street, J. M., Tooher, R., Feng, X., & Scharling-Gamba, K. (2020). Student and Staff Perspectives on the Use of Big Data in the Tertiary Education Sector: A Scoping Review and Reflection on the Ethical Issues. Review of Educational Research, 90(6). https://doi.org/10.3102/0034654320960213
Buitrago-Ropero, M. E., Ramírez-Montoya, M. S., & Laverde, A. C. (2020). Digital footprints (2005-2019): a systematic mapping of studies in education. Interactive Learning Environments, 1-14. https://doi.org/10.1080/10494820.2020.1814821
Cano, I. (2019). Sobre las limitaciones de Big Data en ciencias sociales. Sociología y tecnociencia, 9(2), 77-99. https://doi.org/10.24197/st.2.2019.77-98
Correa, J. M., & Aberasturi-Apraiz, E. (2015). Redes sociales e identidad digital docente. Experiencias de aprendizaje de futuras maestras de educación infantil a partir de la exposición artística Big Bang Data. Opción, 31, 311-333.
Correa Gorospe, J. M., Aberasturi-Apraiz, E., & Gutierrez-Cabello, A. (2016). Ciudadanía digital, activismo docente y formación de futuras maestras de educación infantil. Revista Latinoamericana de Tecnología Educativa, 15(2), 39-54.
Correa, J. M., Aberasturi-Apraiz, E., Gutierrez-Cabello, A., & Guerra, R. (2017). Usos críticos de las tecnologías digitales para el aprendizaje dentro y fuera de los contextos institucionales de formación. En H. Arancibia, P. Castillo y J. Saldaña (Eds.), Innovación educativa: perspectivas y desafíos (pp. 175-208). Valparaiso: Ediciones Universidad de Valparaíso.
Chan K. S., & Zary N. (2019). Applications and challenges of implementing artificial intelligence in medical education: Integrative review. JMIR Medical Education. 5(1). https://doi.org/10.2196/13930
Crawford, K. (2013, April 1). The hidden biases in big data. HBR Blog Network. Retrieved from https://s.hbr.org/36bjkDO
D’Ignazio, C., & Bhargava, R. (2015). Approaches to Building Big Data Literacy [Paper presentation]. Bloomberg Data for Good Exchange Conference, New York. https://bit.ly/33lQ3Eq
D’Ignazio, C., & Bhargava, R. (2018). Cultivating a Data Mindset in the Arts and Humanities. Public, 4(2). https://bit.ly/3fEsQCx
D’Ignazio, C. (2017). Creative Data Literacy: Bridging the Gap between the Data-Haves and Data-Have Nots. Information Design Journal, 23(1), 6–18. https://doi.org/10.1075/idj.23.1.03dig
D'Ignazio, C. (2020). Art and Cartography. In A. Kobayashi (Ed.), International Encyclopedia of Human Geography (Second Edition) (pp. 189-207). Elsevier. https://doi.org/10.1016/B978-0-08-102295-5.10510-4
D’Iganzio, K. & Klein, L. (2020). Data Feminism. Cambridge, MA: MIT Press.
Daniel, B. K. (2017). Big Data and data science: A critical review of issues for educational research. British Journal of Educational Technology, 50(1). https://doi.org/101-113. 10.1111/bjet.12595
Dourish, P. (2016). Algorithms and their others: Algorithmic culture in context. Big Data & Society. https://doi.org/10.1177/2053951716665128
Dyke, E., & Meyerhoff, E. (2018). Radical imagination as pedagogy. Transformations: The Journal of Inclusive Scholarship and Pedagogy, 28(2), 160–180. https://doi.org/10.5325/trajincschped.28.2.0160
Eynon, R. (2013). The rise of Big Data: what does it mean for education, technology, and media research? Learning Media and Technology, 38(3), 237-240. https://doi.org/10.1080/17439884.2013.771783
Eubanks, V. (2018). Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. New York: St. Martin’s Press.
Fotopoulou, A. (2020): Conceptualising critical data literacies for civil society organisations: agency, care, and social responsibility. Information, Communication & Society. https://doi.org/10.1080/1369118X.2020.1716041
Franco, P. D., Matas, A., & Leiva, J. J. (2020). Big Data Irruption in Education. Pixel-Bit. Revista de Medios y Educación, 57, 59-90. https://doi.org/10.12795/pixelbit.2020.i57.02
Freire, P. (1970). Pedagogía del Oprimido. Montevideo: Tierra Nueva.
Gallagher, M., Breines, M., & Blaney, M. (2020). Ontological Transparency, (In)visibility, and Hidden Curricula: Critical Pedagogy Amidst Contentious Edtech. Postdigit Sci Educ. https://doi.org/10.1007/s42438-020-00198-1
Garg, T. (2020). Artificial intelligence in medical education. The American Journal of Medicine. 133(2). https://doi.org/10.1016/j.amjmed.2019.08.017
Guillemin, M., & Gillam, L. (2004). Ethics, Reflexivity, and “Ethically Important Moments” in Research. Qualitative Inquiry, 10(2), 261–280. https://doi.org/10.1177/1077800403262360
Goldsman, F. (2020). La distopia llegó: pensar las tecnologías del reconocimiento de personas desde la periferia. https://bit.ly/2JbCzUY
Goldsman, F. (2018). Defender los territorios (digitales) sin dejar huella. https://bit.ly/3o5JduZ
Gray, J., Gerlitz, C., & Bounegru, L. (2018). Data infrastructure literacy. Big Data & Society, 5(2). https://doi.org/10.1177/2053951718786316
Grzymek, V., & Puntschuh, M. (2019). Was Europa über Algorithmen weiß und denkt. Ergebnisse einer repräsentativen Bevölkerungsumfrage. Bertelsmann Stiftung. https://doi.org/10.11586/2019006
Gutiérrez-Cabello, A., Correa Gorospe, J. M., & Aberasturi-Apraiz, E. (2020). Disidencia artística frente al control digital en la formación de maestras. Revista Izquierdas 49, 2127-2145.
Hernando, A. (2020). Catherine D'Ignazio, coautora del libro ‘Data Feminism’. https://bit.ly/37aK4Uh
Hintz, A., Dencik, L., & Wahl-Jorgensen, K. (2018). Digital citizenship in a datafied society. Medford, USA: Polity Press.
Jandrić, P., Ryberg, T., Knox, J., Lacković, N., Hayes, S., Suoranta, J., Smith, M., Steketee, A.,Peters, M. A., McLaren, P., Ford, D. R., Asher, G., McGregor, C., Stewart, G., Williamson, B., & Gibbons, A. (2018). Postdigital Dialogue. Postdigital Science and Education, 1(1), 163–189. https://doi.org/10.1007/s42438-018-0011-x
Leander, K. M. & Burriss, S. K. (2020), Critical literacy for a posthuman world: When people read, and become, with machines. British Journal of Educationa Technoly, 51, 1262-1276. https://doi.org/10.1111/bjet.12924
Marín, V. I., Carpenter, J. P., & Tur, G. (2020). Pre-service teachers' perceptions of social media data privacy policies. British Journal of Educational Technology. https://doi.org/10.1111/bjet.13035
Myers, F, Collins H, Glover H, & Watson M. (2019). The automation game: Technological retention activities and perceptions on changes to tutors’ roles and identity. Teaching in Higher Education, 24(4), 545–562. https://doi.org/10.1080/13562517.2018.1498074
Ofcom (2019). Adults: Media use and attitudes report [Report]. https://bit.ly/39lx7tC
Ofcom (2020). Adults: Media use and attitudes report [Report]. https://bit.ly/3mebPBw
Ochoa-Aizpurua, B., Correa Gorospe, J.M., & Gutierrez-Cabello Barragan, A. (2019). Las Tic en la atención a la diversidad educativa: El caso de la comunidad Autónoma Vasca. Revista de Educación a Distancia. 61, 1-21
O´Neil, C. (2017). Armas de destrucción matemática. Cómo el Big Data aumenta la desigualdad y amenaza la democracia. Madrid: Capitán Swing.
Pangrazio, L., & Selwyn, N. (2019). ‘Personal data literacies’: A critical literacies approach to enhancing understandings of personal digital data. New Media & Society, 21(2), 419–437. https://doi.org/10.1177/1461444818799523
Redden J (2018) Democratic governance in an age of datafication: lessons from mapping government disurses and practices. Big Data & Society 5(2), 1-13.
Sander, I. (2020). Critical Big Data Literacy Tools – Engaging Citizens and Promoting Empowered Internet Usage. ORCA. https://bit.ly/3ldsFzl
Sandu, N., & Gide, E. (2019). Adoption of AI-Chatbots to enhance student learning experience in higher education in India. 18th International Conference on Information Technology Based Higher Education and Training (ITHET) (pp. 1-5). https://doi.org/10.1109/ITHET46829.2019.8937382
Southerton C. (2020) Datafication. In: Schintler L., McNeely C. (eds) Encyclopedia of Big Data. Springer, Cham. https://doi.org/10.1007/978-3-319-32001-4_332-1
Stewart GT, St. Pierre E, Devine N, & Kirloskar-Steinbach M.(2020). The End of the Dream: Postmodernism and Qualitative Research. Qualitative Inquiry. November 2020. https://doi.org/10.1177/1077800420971867
Turow, J., Hennessy, M., & Draper, N. A. (2015). The tradeoff fallacy: How marketers are misrepresenting American consumers and opening them up to exploitation [Report]. Annenberg School for Communication. https://bit.ly/368vmOd
Turow, J., Hennessy, M., & Draper, N. (2018). Persistent Misperceptions: Americans’ Misplaced Confidence in Privacy Policies, 2003–2015. Journal of Broadcasting & Electronic Media, 62(3), 461–478. https://doi.org/10.1080/08838151.2018.1451867
Williamson, B. (2019). El future del curriculum. La educación y el conocimiento en la era digital. Madrid: Morata
Williamson, B. (2018). Big Data en la Educación. El futuro digital del aprendizaje, la política y la práctica. Madrid: Morata
Worledge, M., & Bamford, M. (2019). Adtech: Market Research Report. Information Commissioner’s Office. Ofcom. https://bit.ly/2V57o00
Zuboff, S. (2015). Big other: Surveillance capitalism and the prospects of an information civilization. Journal of Information Technology, 30(1), 75–89. https://doi.org/10.1057/jit.2015.5
Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. New York, NY: PublicAffairs.
Published
11/09/2021