Los Problemas de Fermi y las Modelling Eliciting Activities como un recurso para fomentar la Modelización Matemática entre el alumnado de Educación Primaria

Autores/as

DOI:

https://doi.org/10.24197/edmain.1.2024.58-92

Palabras clave:

Modelización matemática, problemas de Fermi, Modelling Eliciting Activities, Ciclo de modelización, Educación Primaria

Resumen

La modelización matemática ocupa un lugar relevante en la investigación educativa internacional. En este contexto, el presente estudio trata sobre una actividad de modelización matemática diseñada y elaborada a partir de los planteamientos teóricos tanto de los problemas de Fermi como de las Modelling Eliciting Activities (MEA’s). El objetivo del estudio es describir y comprender los procesos de modelización matemática a través de las producciones y reacciones de alumnos ecuatorianos de Educación Primaria (10-11 años) cuando resuelven una de estas actividades.  Se utilizó un enfoque metodológico mixto a través de un diseño de estudio de caso intensivo. Los resultados muestran que el alumnado, a pesar de no tener experiencia previa con estas actividades, es capaz de comprender el problema, establecer conjeturas, suposiciones y proponer ideas de solución. Se concluye que estas actividades presentan grandes ventajas para el desarrollo de las habilidades de modelización del alumnado de esta etapa educativa.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ximena Toalongo, Universitat de Girona

Ximena Patricia Toalongo Guamba, ecuatoriana, Máster en Atenció a la Diversitat en una Escola Inclusiva por la Universitat de Girona, personal docente investigador de la Universitat de Girona. Líneas de investigación: Altas capacidades y talento matemático, evaluación competencial matemática, educación inclusiva en el ámbito matemático, formación inicial y permanente del profesorado de matemáticas, modelización matemática, estadística.

César Trelles, Universidad de Cuenca, Departamento de Educación (Ecuador)

César Trelles Zambrano, ecuatoriano, PhD. en Educación por la Universitat de Girona., docente – investigador del Departamento de Educación de la Universidad de Cuenca. Líneas de investigación: Modelización matemática aplicada a la educación, didáctica de la matemática, la estadística y la probabilidad, conocimiento matemático del profesorado, altas capacidades y talento matemático, formación inicial y permanente del profesorado, uso de la tecnología en la resolución de problemas.

Ángel Alsina, Universidad de Girona

Ángel Alsina, español, PhD. en Psicología por la Universitat de Barcelona, Catedrático – Investigador de la Universidad de Girona. Líneas de Investigación: Educación matemática en las primeras edades, formación inicial y permanente del profesorado de matemáticas, modelización matemática, Educación STEAM, aprendizaje reflexivo en la educación superior. Scopus Author ID: 36061280300, ResearcherID: E-5347-2010

Citas

Albarracín, L. (2017). Los problemas de Fermi como actividades para introducir la modelización. Modelling in Science Education and Learning, 10(2), 117-135. https://doi.org/10.4995/msel.2017.7707

Albarracín, L. y Gorgorió, N. (2019). Using large number estimation problems in primary education classrooms to introduce mathematical modelling. International Journal of Innovation in Science and Mathematics Education, 27(2), 45-57. https://doi.org/10.30722/IJISME.27.02.004

Albarración, L., Segura, C., Ferrando, I. y Gorgorió, N. (2022). Supporting mathematical modelling by upscaling real context in a sequence of tasks. Teaching Mathematics and its Applications: An International Journal of the IMA, 41(3), 183-197. https://doi.org/10.1093/teamat/hrab027

Alsina, Á., Toalongo, X., Trelles, C. y Salgado, M. (2021). Desarrollando habilidades de modelización matemática temprana en Educación Infantil: un análisis comparativo en 3 y 5 años. Quadrante: Revista de Investigação em Educação Matemática, 30(1), 74-93. https://doi.org/10.48489/quadrante.23654

Alsina, C., García-Raffi, L. M., Gómez, J. y Romero, S. (2007). Modelling in science education and learning. SUMA, 54, 51-53.

Ärlebäck, J. B. (2009). On the use of realistic Fermi problems for introducing mathematical modelling in school. The Mathematics Enthusiast, 6(3), 331-364. https://doi.org/10.54870/1551-3440.1157

Ärlebäck, J. B. (2011). Exploring the solving process of groups solving realistic Fermi problem from the perspective of the anthropological theory of didactics. En M. Pytlak, T. Rowland y W. Swoboda (Eds.), Proceedings of the Seventh Conference of European Research in Mathematics Education (CERME 7) (pp. 1010-1020). University of Rzeszów.

Ärlebäck, J. y Bergsten, C. (2010). On the use of realistic Fermi problems in introducing mathematical modelling in upper secondary mathematics. En R. Lesh, P. Galbraith, C. Haines y A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 597-609). Springer. https://doi.org/10.1007/978-1-4419-0561-1_52

Aymerich, A. y Albarracín, L. (2022). Modelización matemática en actividades estadísticas: episodios clave para la generación de modelos. Uniciencia, 36(1), 1-18. https://dx.doi.org/10.15359/ru.36-1.16

Barquero, B., Bosch, M. y Gascón, J. (2014). Incidencia del “aplicacionismo” en la integración de la modelización matemática en la enseñanza universitaria de las ciencias experimentales. Enseñanza de las Ciencias, 32(1), 83-100. https://doi.org/10.5565/rev/ensciencias.933

Barquero, B., Bosch, M. y Romo, A. (2018). Mathematical modelling in teacher education: dealing with institutional constraints. ZDM Mathematics Education, 50, 31-43. https://doi.org/10.1007/s11858-017-0907-z

Barquero, B. y Jessen, B. E. (2020). Impacto del enfoque teórico en el diseño de tareas de modelización matemática. Avances de Investigación en Educación Matemática, 17, 98-113. https://doi.org/10.35763/aiem.v0i17.317

Bliss, K. y Libertini, J. (2019). What is mathematical modeling? En S. Garfunkel y M. Montgomery (Eds.), Guidelines for assessment & instruction in mathematical modeling education (pp. 7-21). Consortium for Mathematics and Its Applications and Society for Industrial and Applied Mathematics.

Blum, W. y Borromeo, R. (2009). Mathematical Modelling: Can I Be Taught And Learn? Journal of Mathematical Modeling and Application, 1(1), 45-58.

Blum, W. y Leiβ, D. (2007). How do students and teachers deal with modelling problems? En C. Haines, P. Galbraith, W. Blum y S. Khan (Eds.), Mathematical Modelling: Education, Engineering and Economics (pp. 222-231). Woodhead Publishing. https://doi.org/10.1533/9780857099419.5.221

Brady, C. (2018). Modelling and the representational imagination. ZDM, 50(1), 45-59. https://doi.org/10.1007/s11858-018-0926-4

Carreira, S., Amado, N. y Lecoq, F. (2011). Mathematical Modeling of Daily Life in Adult Education: Focusing on the Notion of knowledge. En G. Kaiser, W. Blum, R. Borromeo Ferri y G. Stillman (Eds.), Trends in teaching and Learning of Mathematical Modeling (pp. 199-210). Springer. https://doi.org/10.1007/978-94-007-0910-2_21

Coller, X. (2005). Estudio de casos. Centro de Investigaciones Sociológicas.

Daher, W. (2021). Middle school students' Motivation in solving modelling activities with technology. EURASIA, 17(9), 1-13. https://doi.org/10.29333/ejmste/11127

English, L. D. (1996). Children's reasoning in solving novel problems of deduction. En L. Puig y A. Gutiérrez (Ed.), Proceedings of the 20th PME International Conference, 2 (pp. 329-336). PME.

English, L. D. (Ed.). (1997). Mathematical reasoning: Analogies, metaphors, and images. Lawrence Erlbaum.

English, L. D. (2004). Promoting the development of young children's mathematical and analogical reasoning. En L. D. English (Ed.), Mathematical and analogical reasoning of young learners (pp. 210-215). Lawrence Erlbaum.

English, L. D. (2006). Mathematical Modeling in the Primary School: Children's construction of a consumer guide. Educational Studies in Mathematics, 63, 303-323. https://doi.org/10.1007/s10649-005-9013-1

English, L. D. (2010). Modeling with Complex Data in the Primary School. En R. Lesh, P. Galbraith, C. Haines y A. Hurford, Modelling Students' Mathematical Modeling Competencies (pp. 287-300). Springer. https://doi.org/10.1007/978-1-4419-0561-1_25

English, L. D. (2014). Promoting statical literacy through data modelling in the early school years. En E. Chernoff y B. Sriraman (Eds.), Probalistic thinking: presenting plural perspectives (pp. 441-458). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-7155-0_23

English, L. D. y Watson, J. (2018). Modelling with authentic data in sixth grade. ZDM Mathematics Education, 50, 103-115. https://doi.org/10.1007/s11858-017-0896-y

Ferrando, I. y Albarracín, L. (2021). Students from grade 2 to grade 10 solving a Fermi problem: analysis of emerging models. Mathematics Education Research Journal, 33(1), 61-78. https://doi.org/10.1007/s13394-019-00292-z

Ferrando, I. y Navarro, B. (2015). Un viaje de fin de curso y tres tareas de modelización. Una experiencia en un aula de secundaria. Modelling in Science Education and Learning, 8(2), 79-92. https://doi.org/10.4995/msel.2015.3681

Florensa, I., García, F. J. y Sala, G. (2020). Condiciones para la enseñanza de la modelización matemática: estudios de casos en distintos niveles educativos. Avances de Investigación en Educación Matemática, 17, 21-37. https://doi.org/10.35763/aiem.v0i17.315

Gallart, C., García-Raffi, L. y Ferrando, I. (2019). Modelización matemática en la educación secundaria: manual de uso. Modelling in Science Education and Learning, 12(1), 71-86. https://doi.org/10.4995/msel.2019.10955

Geiger, V. (2011). Factors Affecting Teachers' Adoption of Innovative Practices with Technology and Mathematical Modeling. En G. Kaiser, W. Blum, R. Borromeo Ferri y G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modeling, (ICTMA 14) (pp. 305-314). Springer. https://doi.org/10.1007/978-94-007-0910-2_31

Gerring, J. (2017). Case study research: Principles and Practices (Strategies for Social Inquiry). Cambridge University Press.

Girnat, B. y Eichler, A. (2011). Secondary Teacher`s Beliefs on Modeling in Geometry and Stochastics. En G. Kaiser, W. Blum, R. Borromeo Ferri y G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modeling (pp. 75-84). Springer. http://doi.org/10.1007/978-94-007-0910-2_9

Greefrath, G. (2011). Using Technologies: New Possibilities of Teaching and learning Modeling - Overview. En G. Kaiser, W. Blum, R. Borromeo Ferri y G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modeling, (ICTMA 14) (pp. 301-304). Springer. https://doi.org/10.1007/978-94-007-0910-2_30

Haberzettl, N., Klett, S. y Schukajlow, S. (2018). Mathematik rund um die Schule—Modellieren mit Fermi-Aufgaben. En K. Eilerts y K. Skutella (Eds.), Neue Materialien für einen realitätsbezogenen Mathematikunterricht 5. Ein ISTRON-Band für die Grundschule (pp. 31-41). Springer. https://doi.org/10.1007/978-3-658-21042-7_3

Henze, J. y Fritzlar, T. (2010). Primary school children’s model building processes by the example of Fermi questions. En A. Ambrus y E. Vásárhelyi (Ed.), Problem Solving in Mathematics Education. Proceedings of the 11th ProMath conference (pp. 60-75). Eötvös Loránd University.

Hernandez-Martínez, P. y Vos, P. (2018). "Why do I have to learn this?" A case study on estudents' experiences of the relevance of mathematical modelling activities. ZDM Mathematics Education, 50, 245-257. https://doi.org/10.1007/s11858-017-0904-2

Hernández-Sampieri, R. y Mendoza, C. (2018). Metodología de la Investigación: Las rutas cuantitativa, cualitativa y mixta. McGraw-Hill.

Ji, X. (2012). A quasi-experimental study of high school students’ mathematics modelling competence. En 12th International Congress on Mathematical Education (8 - 15 July 2012). COEX.

Jung, H. y Brady, C. (2023). Modeling actions foregrounded in whole-class modeling discourse: A case study of a model-eliciting activity and a three-act task. Mathematical Thinking and Learning, 1-24. https://doi.org/10.1080/10986065.2023.2180849

Jung, H., Stehr, E. y He, J. (2019). Mathematical modeling oportunities reported by secondary mathematics preservice teachers and instructors. School Science and Mathematics, 119(6), 353-365. https://doi.org/10.1111/ssm.12359

Kaygisiz, I. y Şenel, E. A. (2023). Investigating mathematical modeling competencies of primary school students: Reflections from a model eliciting activity. Journal of Pedagogical Research, 7(1), 1-24. https://doi.org/10.33902/JPR.202317062

Krippendorff, K. (2018). Content Analysis: An introduction to its metodology. SAGE Publications.

Leong, R. (2012). Assessment of mathematical modeling. Journal of Mathematics Education at Teachers College, 3(1), 61-65. https://doi.org/10.7916/jmetc.v3i1.736

Lesh, R. y Doerr, H. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning and problem solving. En R. Lesh y H. Doerr (Eds.), Beyond Constructivism: Models and Modeling Perspectives on Mathematics Problem Solving, Learning, and Teaching (pp. 3-34). Lawrence Erlbaum Associates.

Lesh, R., Hoover, M., Hole, B., Kelly, A. y Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. En A. Kelly, R. Lesh, A. Kelly y R. Lesh (Eds.), Handbook of Research Desing in Mathematics and Science Education (pp. 591-645). Lawrence Erlbaum Associates.

Lu, X. y Kaiser, G. (2022). Can mathematical modelling works as a creativity-demanding activity? An empirical study in China. ZDM Mathematics Education, 54(1), 67-81. https://doi.org/10.1007/s11858-021-01316-4

Montero, L. E. y Vargas, V. (2022). Ciclos de modelación y razonamiento covariacional al realizar una actividad provocadora de modelos. Educación Matemática, 34(1), 214-248. https://doi.org/10.24844/EM3401.08

National Council of Teachers of Mathematics. (1989). Curriculum and Evaluation Standars for School Matematics. NCTM.

National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. An overview. NCTM.

National Governors Association Center for Best Practices: Council of Chief State School Officers. (2010). Common Core State Standars for Mathematics.

OECD (2023). PISA 2022 Assessment and Analytical Framework. (PISA, Ed.) OECD Publishing. https://doi.org/10.1787/dfe0bf9c-en.

Ruiz-Higueras, L. y García, F. J. (2011). Análisis de praxeologías didácticas en la gestión de procesos de Modelización Matemática en la Escuela Infantil. Revista Latinoamericana de Investigación en Matemática Educativa, 14(1), 41-70.

Ruiz-Higueras, L., García, F. J. y Lendínez, E. (2013). La actividad de modelización en el ámbito de las relaciones espaciales en la Educación Infantil. Edma 0-6: Educación Matemática en la Infancia, 2(1), 95-118. https://doi.org/10.24197/edmain.1.2013.95-118

Segura, C. y Ferrando, I. (2023). Pre-service teachers’ flexibility and performance in solving Fermi problems. Educational Studies in Mathematics, 113(2), 207-227. https://doi.org/10.1007/s10649-023-10220-5

Segura, C., Ferrando, I. y Albarracín, L. (2023). Does collaborative and experiential work influence the solution of real-context estimation problems? A study with prospective teachers. The Journal of Mathematical Behavior, 70, 101040. https://doi.org/10.1016/j.jmathb.2023.101040

Sol, M., Giménez, J. y Rosich, N. (2011). Trayectorias modelizadoras en la ESO. Modelling in Science Education and Learning, 4(27), 329-343. https://doi.org/10.4995/msel.2011.3100

Sriraman, B. y Knott, L. (2009). The mathematics of estimation: Possibilities for interdisciplinary pedagogy and social consciousness. Interchange, 40(2), 205-223. https://doi.org/10.1007/s10780-009-9090-7

Taggart, G. L., Adams, P. E., Eltze, E., Heinrichs, J., Hohman, J. y Hickman, K. (2007). Fermi Questions. Mathematics Teaching in the Middle School, 13(3), 164-167. https://doi.org/10.5951/MTMS.13.3.0164

Tekin-Dede, A. y Bukova-Güzel, E. (2018). A rubric development study for the assessment of modeling skills. The Mathematics Educator, 27(2), 33-72.

Tekin-Dede, A. y Yılmaz, S. (2013). İlköğretim matematik öğretmeni adaylarının modelleme yeterliliklerinin incelenmesi [Examination of modeling competencies of primary school mathematics teacher candidates]. Turkish Journal of Computer and Mathematics Education, 4(3), 185-206.

Toalongo, X., Alsina, Á., Trelles, C. y Salgado, M. (2021). Creando los primeros modelos matemáticos: análisis de un ciclo de modelización a partir de un problema real en Educación Infantil. CADMO(1), 81-98. https://doi.org/10.3280/CAD2021-001006

Toalongo, X., Trelles, C. y Alsina, Á. (2022). Design, Construction and Validation of a Rubric to Evaluate Mathematical Modelling in School Education. Mathematics, 10(24), 4662. https://doi.org/10.3390/math10244662

Trelles, C., Toalongo, X. y Alsina, Á. (2022a). Una actividad de modelización matemática en primaria con datos auténticos de la COVID-19. Enseñanza de las Ciencias, 40(2), 192-213. https://doi.org/10.5565/rev/ensciencias.3472

Trelles, C., Toalongo, X. y Alsina, Á. (2022b). La presencia de la modelización matemática en tareas de estadística y probabilidad de libros de texto ecuatorianos. Innova Research Journal, 7(2), 97-116. https://doi.org/10.33890/innova.v7.n2.2022.2076

Trelles-Zambrano, C. y Alsina, Á. (2017). Nuevos Conocimientos para una Educación Matemática del S. XXI: panorama internacional de la modelización en el currículo. Unión Revista Iberoamericana de Educación Matemática, 51, 140-163.

Trelles-Zambrano, C., Toalongo-Guamba, X., Alsina, Á. y Gonzáles, N. (2019). La modelización matemática a través de las actividades generadoras de modelos: una propuesta para el aula de secundaria. Épsilon-Revista de Educación Matemática, 102, 43-59.

Trigueros Gaisman, M. (2006). Ideas acerca del movimiento del péndulo. Revista Mexicana de Investigación Educativa, 11(31), 1207-1240.

Turner, E., Chen, M., Roth McDuffie, A., Smith, J., Aguirre, J. y Foote, M. B. (2021). Validating a student assessment of mathematical modeling at elementary school level. School Science and Mathematics, 121(7), 408-421. https://doi.org/10.1111/ssm.12494

Vargas, V., Escalante, C. y Carmona, G. (2018). Competencias matemáticas a través de la implementación de actividades provocadoras de modelos. Educación Matemática, 30(1), 213-236. https://doi.org/10.24844/EM3001.08

Yin, R. K. (2018). Case study research and applications: design and methods. SAGE Publications, Inc.

Zubi, I. A., Peled, I. y Yarden, M. (2018). Children with mathematical difficulties cope with modelling tasks: what develops? International Journal of Mathematical Education in Science and Technology, 50(4), 506-526. https://doi.org/10.1080/0020739X.2018.1527404

Descargas

Publicado

01/08/2024

Cómo citar

Toalongo, X., Trelles, C., & Alsina, Ángel. (2024). Los Problemas de Fermi y las Modelling Eliciting Activities como un recurso para fomentar la Modelización Matemática entre el alumnado de Educación Primaria. Edma 0-6: Educación Matemática En La Infancia, 13(1), 58–92. https://doi.org/10.24197/edmain.1.2024.58-92

Número

Sección

Artículos